当前位置:首页 > 学习库 > 正文内容

高中数学几何公式,几何问题的公式有哪些

网络王子1年前 (2023-12-19)学习库51

高中数学几何公式目录

高中数学几何公式

几何问题的公式有哪些

数学公式 高中 几何部分

高中数学公式

高中数学几何公式

高中数学几何常见的公式包括: 1. 三角形的面积公式: - 霍克公式:$S = \sqrt{s(s-a)(s-b)(s-c)}$,其中 $s$ 为三角形的半周长,$a, b, c$ 为三角形的边长。 - 正弦定理:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$。 - 余弦定理:$a^2 = b^2 c^2 - 2bc\cos A$(以及对应角的两个变形)。 2. 圆的面积和周长公式: - 面积公式:$A = \pi r^2$,其中 $r$ 为半径。 - 周长公式:$C = 2\pi r$。 3. 矩形的面积和周长公式: - 面积公式:$A = lw$,其中 $l$ 为矩形的长,$w$ 为矩形的宽。 - 周长公式:$P = 2l 2w$。 4. 平行四边形的面积公式:$A = bh$,其中 $b$ 为底边长,$h$ 为高。 5. 梯形的面积公式:$A = \frac{(a b)h}{2}$,其中 $a$ 和 $b$ 为上底和下底长,$h$ 为高。 6. 直角三角形的勾股定理:$a^2 b^2 = c^2$,其中 $c$ 为斜边长。 以上只是常见的几何公式之一,还有许多其他公式和定理,不同的教材和教学要求可能会有所不同,建议根据具体教材和教师的要求进行学习和掌握。

几何问题的公式有哪些

立体几何所有公式如下:

1、平面图形(名称符号周长C和面积S)

正方形边长a,C=4a,S=a2

长方形边长a和b,C=2(a b),S=ab

三角形边长a,b,c,a边上的高h,周长的一半s,内角A,B,C,其中s=(a b c)/2,S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)

四边形边长d,对角线长D,对角线夹角a,S=dD/2·sinα

平行四边形边长a,b,a边的高h,两边夹角α,S=ah=absinα

菱形边长a,夹角α,长对角线长D,短对角线长d,S=Dd/2=a2sinα

梯形上、下底长a和b,高h,中位线长m,S=(a b)h/2=mh

圆半径r,直径d,C=πd=2πrS=πr2=πd2/4

扇形半径r,圆心角度数a,C=2r+2πr×(a/360),S=πr2×(a/360)

弓形弧长l,弦长b,矢高h,半径r,圆心角的度数α,S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=παr2/360-b/2·[r2-(b/2)2]1/2=r(l-b)/2 bh/2≈2bh/3

圆环外圆半径R,内圆半径r,外圆直径D,内圆直径d,S=π(R2-r2)=π(D2-d2)/4

椭圆长轴D,短轴d,S=πDd/4

2、立方图形(名称符号面积S和体积V)

正方体边长a,S=6a2,V=a3

长方体长a,宽b,高c,S=2(ab ac bc,V=abc

棱柱底面积S,高h,V=Sh

棱锥底面积S,高h,V=Sh/3

棱台上、下底面积S1和S2,高h,V=h[S1 S2 (S1S1)1/2]/3

拟柱体上底面积S1,下底面积S2,中截面积S0,高h,V=h(S1 S2 4S0)/6

圆柱底半径r,高h,底面周长C,底面积S底,侧面积S侧,表面积S表,C=2πr,S底=πr2,S侧=Ch,S表=Ch 2S底,V=S底h=πr2h

空心圆柱外圆半径R,内圆半径r,高h,V=πh(R2-r2)

直圆锥底半径r,高h,V=πr2h/3

圆台上底半径r,下底半径R,高h,V=πh(R2+Rr+r2)/3

球半径r,直径d,V=4/3πr3=πd2/6

球缺球缺高h,球半径r,球缺底半径a,V=πh(3a2 h2)/6=πh2(3r-h)/3a2=h(2r-h)

球台球台上、下底半径r1和r2,高h,V=πh[3(r12+r22) h2]/6

圆环体环体半径R,环体直径D,环体截面半径r,环体截面直径d,V=2π2Rr2=π2Dd2/4

桶状体桶腹直径D,桶底直径d,桶高h,V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心),V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)

立体几何的意义及八大定理

数学上,立体几何是三维欧氏空间的几何的传统名称,因为实际上这大致上就是我们生活的空间。

一般作为平面几何的后续课程。

高中阶段常研究空间几何体、空间向量和立体几何等问题和相关内容。

立体测绘(Stereometry)处理不同形体的体积的测量问题:圆柱,圆锥,锥台,球,棱柱,楔,瓶盖等等。

毕达哥拉斯学派就处理过球和正多面体,但是棱锥,棱柱,圆锥和圆柱在柏拉图学派着手处理之前人们所知甚少。

尤得塞斯(Eudoxus)建立了它们的测量法,证明锥是等底等高的柱体积的三分之一,可能也是第一个证明球体积和其半径的立方成正比的。

立体几何的定理:直线与平面平行的判定定理,如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。

直线与平面平行的性质定理,如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

平面与平面平行的判定定理,如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

平面与平面平行的性质定理,如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。

直线与平面垂直的判定定理,如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理,若两条直线垂直于同一个平面,则这两条直线平行。

平面与平面垂直的判定定理,如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

平面与平面垂直的性质定理,如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。

数学公式 高中 几何部分

抛物线标准方程:y^2=2px

圆:体积=4/3(pi)(r^3)

面积=(pi)(r^2)

周长=2(pi)r

圆的标准方程 (x-a)2 (y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2 y2 Dx Ey F=0 注:D2 E2-4F

扫描二维码推送至手机访问。

版权声明:本文由新高三网发布,如需转载请注明出处。

本文链接:https://gs61.com/news/39646.html

分享给朋友:

“高中数学几何公式,几何问题的公式有哪些”的相关文章