高中三角函数公式目录
高中三角函数公式包括基本公式、倍角公式、和差角公式、辅助角公式、半角公式、和差化积公式等。具体如下:
1. 基本公式:sin(α)=∠α的对边/斜边;cos(α)=∠α的邻边/斜边;tan(α)=∠α的对边/∠α的邻边。
2. 倍角公式:sin(2α)=2sin(α)cos(α);cos(2α)=cos2(α)-sin2(α);tan(2α)=(2tan(α))/(1-tan2(α))。
3. 和差角公式:sin(α β)=sin(α)cos(β) cos(α)sin(β);sin(α-β)=sin(α)cos(β)-cos(α)sin(β);cos(α β)=cos(α)cos(β)-sin(α)sin(β);cos(α-β)=cos(α)cos(β) sin(α)sin(β);tan(α β)=(tan(α) tan(β))/(1-tan(α)tan(β));tan(α-β)=(tan(α)-tan(β))/(1 tan(α)tan(β))。
4. 辅助角公式:Asinα Bcosα=(A2 B2)1/2sin(α t),其中tan2(α)=(1-cos(2α))/(1 cos(2α))。
5. 半角公式:sin(α/2)=±√[(1-cos(α))/2];cos(α/2)=±√[(1 cos(α))/2];tan(α/2)=±√[(1-cos(α))/(1 cos(α))]。
6. 和差化积公式:sinθ sinφ=2sin[(θ φ)/2]cos[(θ-φ)/2];sinθ-sinφ=2cos[(θ φ)/2]sin[(θ-φ)/2];cosθ cosφ=2cos[(θ φ)/2]cos[(θ-φ)/2];cosθ-cosφ=-2sin[(θ φ)/2]sin[(θ-φ)/2]。
以上是高中三角函数的一些主要公式,建议查阅高中数学教材或相关教辅,获取更全面和准确的信息。
高中的数学公式定理大集中
三角函数公式表
同角三角函数的基本关系式
倒数关系:
商的关系:
平方关系:
tanα
·cotα=1
sinα
·cscα=1
cosα
·secα=1
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
”)
诱导公式(口诀:奇变偶不变,符号看象限。
)
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式
万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα
·tanβ
tanα-tanβ
tan(α-β)=——————
1+tanα
·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2)
cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式
三角函数的降幂公式
二倍角的正弦、余弦和正切公式
三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2α
sin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3α
tan3α=——————
1-3tan2α
三角函数的和差化积公式
三角函数的积化和差公式
α+β
α-β
sinα+sinβ=2
三角函数公式
两角和公式
sin(A B)=sinAcosB cosAsinB
sin(A-B)=sinAcosB-sinBcosA
cos(A B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB sinAsinB
tan(A B)=(tanA tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1 tanAtanB)
cot(A B)=(cotAcotB-1)/(cotB cotA)
cot(A-B)=(cotAcotB 1)/(cotB-cotA)
倍角公式
tan2A=2tanA/[1-(tanA)^2]
cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2
半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1 cosA)/2) cos(A/2)=-√((1 cosA)/2)
tan(A/2)=√((1-cosA)/((1 cosA)) tan(A/2)=-√((1-cosA)/((1 cosA))
cot(A/2)=√((1 cosA)/((1-cosA)) cot(A/2)=-√((1 cosA)/((1-cosA))
和差化积
2sinAcosB=sin(A B) sin(A-B)
2cosAsinB=sin(A B)-sin(A-B) )
2cosAcosB=cos(A B)-sin(A-B)
-2sinAsinB=cos(A B)-cos(A-B)
sinA sinB=2sin((A B)/2)cos((A-B)/2
cosA cosB=2cos((A B)/2)sin((A-B)/2)
tanA tanB=sin(A B)/cosAcosB
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等
sin(2kπ α)=sinα(k∈Z)
cos(2kπ α)=cosα(k∈Z)
tan(2kπ α)=tanα(k∈Z)
cot(2kπ α)=cotα(k∈Z)
2、公式二:设α为任意角,π α的三角函数值与α的三角函数值之间的关系
sin(π α)=-sinα
cos(π α)=-cosα
tan(π α)=tanα
cot(π α)=cotα
3、公式三:任意角α与-α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
6、公式六:π/2±α与α的三角函数值之间的关系
sin(π/2 α)=cosα
sin(π/2-α)=cosα
cos(π/2 α)=-sinα
cos(π/2-α)=sinα
tan(π/2 α)=-cotα
tan(π/2-α)=cotα
cot(π/2 α)=-tanα
cot(π/2-α)=tanα