等比数列的性质目录
1. 公比:等比数列中,任意两个相邻的项的比值是固定的,这个比值叫做公比。公比用字母q表示。\n\n2. 通项公式:等比数列的第n项为a(n)=a(1)×q^(n-1)。\n\n3. 和的公式:等比数列的前n项和为S(n)=a(1)×(1-q^n)/(1-q)。\n\n4. 求和的性质:等比数列的前n项和与公比q有关,当q>1时,S(n)随n的增加而增加;当01时,后一项比前一项大;当0等比数列有什么性质?等比数列的性质
(1)若 m、n、p、q∈N*,且m n=p q,则am*an=ap*aq;
(2)在等比数列中,依次每 k项之和仍成等比数列.
(3)“G是a、b的等比中项”“G^2=ab(G≠0)”.
(4)若{an}是等比数列,公比为q1,{bn}也是等比数列,公比是q2,则{a2n},{a3n}…是等比数列,公比为q1^2,q1^3… {can},c是常数,{an*bn},{an/bn}是等比数列,公比为q1,q1q2,q1/q2.
(5)等比数列中,连续的,等长的,间隔相等的片段和为等比.
(6)若(an)为等比数列且各项为正,公比为q,则(log以a为底an的对数)成等差,公差为log以a为底q的对数.
(7) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
(8) 数列{An}是等比数列,An=pn q,则An K=pn K也是等比数列,在等比数列中,首项A1与公比q都不为零. 注意:上述公式中A^n表示A的n次方.
(9)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列.
等比数列的性质是什么?
性质
①若 m、n、p、q∈N*,且m+n=p+q,则am*an=ap*aq;
②在等比数列中,依次每 k项之和仍成等比数列.
“G是a、b的等比中项”“G^2=ab(G≠0)”.
③若(an)是等比数列,公比为q1,(bn)也是等比数列,公比是q2,则
(a2n),(a3n)…是等比数列,公比为q1^2,q1^3…
(can),c是常数,(an*bn),(an/bn)是等比数列,公比为q1,q1q2,q1/q2。
(5) 等比数列前n项之和Sn=A1(1-q^n)/(1-q)=A1(q^n-1)/(q-1)=(A1q^n)/(q-1)-A1/(q-1)
在等比数列中,首项A1与公比q都不为零.
注意:上述公式中A^n表示A的n次方。
(6)由于首项为a1,公比为q的等比数列的通向公式可以写成an*q/a1=q^n,它的指数函数y=a^x有着密切的联系,从而可以利用指数函数的性质来研究等比数列
等差数列和等比数列的性质
等差数列的性质:
1)在有限等差数列中,与首末两项等距离的两项的和都等于首末两项的和:
2)各项同加一数所得数列仍是等差数列,并且公差不变;
3) 各项同乘以一不为零的数K,所得的数列仍是等差数列,并且公差是原公差的K倍;
4) 几个等差数列,它们各对应项的和组成的数列仍是等差数列,公差等于各个公差的和;
5)an n 的一次函数,Sn是n的二次函数,定义域是自然数,同时,有an=Sn-Sn_1(n≥2)。
【an---等差数列的通项,Sn---n项之和】
6) 若三个数x,A,y成等差数列,则A=(x y)/2,A称为x,y的等差中项。
公式
一般地,等差数列的计算问题的类型:
在等差数列里,a1,an,d,n,Sni5个元素中,只要已知三个,便可,通过通项公式和前n项和Sn的公式,求出另外两个元素。
这类问题共有C(5,3)=10种。
【C(5,3)即5个中取3个的组合】
等比数列的性质:
1)在有限等比数列中,与首末两项等距离的两项的积都等于首末两项的积;
2)各项同乘以一不为零的数,所得的数列仍是等比数列,并且公比不变;
3)各项倒数所成的数列仍是等比数列,并且公比是原公比的倒数;
4) 几个等比数列,它们各对应项的积组成的数列仍是等比数列,公比等于各公比的积;
5)an,Sn都是n的指数函数,定义域为自然数。
6)若三个数x,G,y成等比数列,则G=±√xy.G称为x,y的等比中项。
7)无穷递减等比数列的和:Sn=a1/(1-q) (|q|