大数据采集与管理专业目录
大数据采集与管理专业是指通过各种数据采集和处理技术,收集、整理、存储、分析和管理庞大、复杂的数据资源,以实现对数据进行深入挖掘、分析和应用的专业领域。该专业主要涉及数据采集、数据清洗、数据存储、数据分析、数据挖掘、数据可视化等多个方面的知识和技术,旨在帮助企业和组织从海量数据中发现潜在商机,提高业务运营效率和竞争力。该专业的毕业生可从事数据分析、数据挖掘、数据仓库设计与管理、大数据平台架构与开发、商业智能等方面的工作。"1、大数据专业,一般是指大数据采集与管理专业;
2、课程设置,大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
3、核心技术,
(1)大数据与Hadoop生态系统。
详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。
(2)关系型数据库技术。
详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
(3)分布式数据处理。
详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。
(4)海量数据分析与数据挖掘。
详细介绍数据挖掘技术、数据挖掘算法–Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法–聚类算法;以及数据挖掘技术在行业中的具体应用。
(5)物联网与大数据。
详细介绍物联网中的大数据应用、遥感图像的自动解译、时间序列数据的查询、分析和挖掘。
(6)文件系统(HDFS)。
详细介绍HDFS部署,基于HDFS的高性能提供高吞吐量的数据访问。
(7)NoSQL。
详细介绍NoSQL非关系型数据库系统的原理、架构及典型应用。
4、行业现状,
今天,越来越多的行业对大数据应用持乐观的态度,大数据或者相关数据分析解决方案的使用在互联网行业,比如百度、腾讯、淘宝、新浪等公司已经成为标准。
而像电信、金融、能源这些传统行业,越来越多的用户开始尝试或者考虑怎么样使用大数据解决方案,来提升自己的业务水平。
在“大数据”背景之下,精通“大数据”的专业人才将成为企业最重要的业务角色,“大数据”从业人员薪酬持续增长,人才缺口巨大。
大数据行业在这几年来非常火爆,许多高校都开设了大数据专业,很多学生选择报考这个专业。
毕业生的就业方向也是比较广泛的,可以根据个人兴趣选择适合自己的工作岗位。
大数据专业的毕业生就业方向有:大数据应用开发类、大数据系统研究类、大数据分析类等等。
从事的工作岗位有:大数据工程师、大数据分析师等等。
大数据领域里面蕴含有三个技术方向,第一个是大数据运维与云计算方向,第二个是数据挖掘、数据分析与机器学习方向,第三个方向是Hadoop大数据开发方向。
毕业生们可以尝试着熟练掌握三者之一,当然全部掌握了是最好的。
要是精通其一的话,那么将来的就业前景会是比较好的,而且薪酬待遇也是较为理想的。
现在是大数据时代,我们国家正在大力发展大数据,现在社会也是很需要这方面人才的。
大数据方面的人才紧缺,很多企业高薪聘请有能力的大数据高级应用人才。
大数据是一个热门的行业,要是学生们想选择大数据专业的话,那么需要好好扎实专业知识,为了日后更好地在大数据行业中获得较好的发展。
大数据专业是近几年开设的新专业,大数据的就业岗位还是很多的,大数据岗位高薪清单对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。
下面为大家介绍十种与大数据相关的热门岗位。
1 ETL研发企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。
ETL开发者这是在此需求基础下而诞生的一个职业岗位。
ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL
2 Hadoop开发随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。
而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。
并成为大数据人才必须掌握的一种技术。
3 可视化工具开发可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
4 信息架构开发大数据重新激发了主数据管理的热潮。
充分开发利用企业数据并支持决策需要非常专业的技能。
信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。
信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
5 数据仓库研究为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。
为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
6 OLAP开发OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
7 数据科学研究数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。
随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。
8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。
预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。
预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
9 企业数据管理企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
10 数据安全研究数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。