全息技术到底是一个怎么样的东西? 为什么说全息照相是利用光的干涉

全息技术到底是一个怎么样的东西? 为什么说全息照相是利用光的干涉

欢迎大家加入这个全息照相利用了光的什么原理问题集合的讨论。我将充分利用我的知识和智慧,为每个问题提供深入而细致的回答,希望这能够满足大家的好奇心并促进思考。

全息技术到底是一个怎么样的东西?

全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。其第一步是利用干涉原理记录物体光波信息,此即拍摄过程,被摄物体在激光辐照下形成漫射式的物光束。另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片,其第二步是利用衍射原理再现物体光波信息,这是成象过程,全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象又称初始象和共轭象。再现的图像立体感强,具有真实的视觉效应。全息图的每一部分都记录了物体上各点的光信息,故原则上它的每一部分都能再现原物的整个图像,通过多次曝光还可以在同一张底片上记录多个不同的图像,而且能互不干扰地分别显示出来。全息技术第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。记录着干涉条纹的底片经过显影、定影等处理程序后,便成为一张全息图,或称全息照片;其第二步是利用衍射原理再现物体光波信息,这是成象过程,全息图犹如一个复杂的光栅,在相干激光照射下,一张线性记录的正弦型全息图的衍射光波一般可给出两个象,即原始象和共轭象。

全息照相原理

全息照相的原理是依据光的干涉原理,利用两束光的干涉记录被摄物体的信息。

全息摄影的原理是基于相同波长和相位的相关光束重叠时,就会相互干涉,在照相底板上产生微细的干涉条纹图(全息图)。显影后,在一束波列(参考光束)的照射下,该光学存储将起到衍射光栅那样的作用,重新产生其它波列,从而通过全息图的底板,在被拍摄物的位置上,就能看到一个完整的三维实像。

在物光垂直入射的全息图中,物光是由激光束在扩散散射表面上折射而产生的,并与反射到全息底板上的参考光重叠,该参考光以后也可用于再现。与第一次曝光状态相比较,如果物体发生了微小的移动或变形,则这种状态下的物光也将相互位移,从观察者看来,该物体好象被干涉条件所覆盖。

如果不是在变化的时候通过已显影全息图进行观察(实时法),而是在事后观察通过两次曝光存储在全息图上的不同状态,也能得到类似的静态印像。这两种都叫做全息干涉法。

可见干涉条纹的形状和数量分别提供了表面上发生的有关位移和变形的信息。这些条纹可用照相或**技术确定下来,从而作出定性的评价,也可以在考虑全息图几何比例的情况下,通过有关的计算,作出定量估计。

特征:

记录底片全部信息尽管立体彩色照片看上去色彩鲜艳、层次分明,富有立体感,但它总归仍是单面图像,再好的立体照也代替不了真实的实物。比如,一个正方形木块的立体照,不论我们怎样改变观察角度,横看竖看,看到的只能是照片上的那个画面。

但全息照就不同了,我们只要改变一下观察角度,就可以看到这个正方块的六个方面。因为全息技术能将物体的全部几何特征信息都记录在底片上,这也是全息照相最重要的一个特点。

以一斑而知全貌全息照相的第二个特点是能以一斑而知全貌。当全息照片被损坏,即使是大半损坏的情况下,我们仍然可以从剩下的那一小半上看到这张全息照片上原有物体的全貌。这对于普通照片来说就不行,即使是损失一只角,那只角上的画面也就看不到了。

为什么说全息照相是利用光的干涉

全息照相的照片本身是有明暗相间的效果,可是问题就在于一定要用相干光源去照射这个照片,也即利用光源发出的相干光作用在这个干涉花纹上面,才会呈现出来立体的图案。

 全息照相是一种不用透镜而能记录和再现物体的三维图象的照相方法。它是能够把来自物体的光波波阵面的振幅和相位的信息记录下来,又能在需要时再现出这种光波的一种技术。

 原理:光波是一种电磁波,它在传插中带有振幅和相位的信息。普通照相是用感光材料作记录介质,用透镜成象系统使物体在感光材料上成象。它所记录的只是来自物体的光波的强度分布图象,即振幅的信息,而不包括相位的信息。因此普通照相只能摄取二维图象。为要同时记录光波的振幅和相位的信息,可借助于一束相干的参考光,利用物光和参考光的光程差,以确定两束光波之间的相位差。因此借助参考光,便可记录来自物体的光波的振幅和相位的信息。

全息照相实验结论

(1) 光源必须是相干光源

通过前面分析知道,全息照相是根据光的干涉原理,所以要求光源必须具有很好的相干性。激光的出现,为全息照相提供了一个理想的光源。这是因为激光具有很好的空间相干性和时间相干性,实验中采用He-Ne激光器,用其拍摄较小的漫散物体,可获得良好的全息图。

(2) 全息照相系统要具有稳定性

由于全息底片上记录的是干涉条纹,而且是又细又密的干涉条纹,所以在照相过程中极小的干扰都会引起干涉条纹的模糊,甚至使干涉条纹无法记录。比如,拍摄过程中若底片位移一个微米,则条纹就分辨不清,为此,要求全息实验台是防震的。全息台上的所有光学器件都用磁性材料牢固地吸在工作台面钢板上。另外,气流通过光路,声波干扰以及温度变化都会引起周围空气密度的变化。因此,在曝光时应该禁止大声喧哗,不能随意走动,保证整个实验室绝对安静。我们的经验是,各组都调好光路后,同学们离开实验台,稳定一分钟后,再在同一时间内爆光,得到较好的效果。

(3) 物光与参考光应满足

物光和参考光的光程差应尽量小,两束光的光程相等最好,最多不能超过2cm,调光路时用细绳量好;两束光之间的夹角要在30°~60°之间,最好在45°左右,因为夹角小,干涉条纹就稀,这样对系统的稳定性和感光材料分辨率的要求较低;两束光的光强比要适当,一般要求在1∶1~1∶10之间都可以,光强比用硅光电池测出。

(4) 使用高分辨率的全息底片

因为全息照相底片上记录的是又细又密的干涉条纹,所以需要高分辨率的感光材料。普通照相用的感光底片由于银化物的颗粒较粗,每毫米只能记录50~100个条纹,天津感光胶片厂生产的I型全息干板,其分辨率可达每毫米3?000条,能满足全息照相的要求。

(5) 全息照片的冲洗过程

冲洗过程也是很关键的。我们按照配方要求配药,配出显影液、停影液、定影液和漂白液。上述几种药方都要求用蒸馏水配制,但实验证明,用纯净的自来水配制,也获得成功。冲洗过程要在暗室进行,药液千万不能见光,保持在室温20℃在右进行冲洗,配制一次药液保管得当可使用一个月左右。

全息照相是什么?什么原理?在哪方面应用?

全息技术是利用干涉和衍射原理记录并再现物体真实的三维图像的记录和再现的技术。其第一步是利用干涉原理记录物体光波信息,此即拍摄过程:被摄物体在激光辐照下形成漫射式的物光束;另一部分激光作为参考光束射到全息底片上,和物光束叠加产生干涉,把物体光波上各点的位相和振幅转换成在空间上变化的强度,从而利用干涉条纹间的反差和间隔将物体光波的全部信息记录下来。

全息原理是“一个系统原则上可以由它的边界上的一些自由度完全描述”,是基于黑洞的量子性质提出的一个新的基本原理。其实这个基本原理是联系量子元和量子位结合的量子论的。其数学证明是,时空有多少维,就有多少量子元;有多少量子元,就有多少量子位。它们一起组成类似矩阵的时空有限集,即它们的排列组合集。全息不全,是说选排列数,选空集与选全排列,有对偶性。即一定维数时空的全息性完全等价于少一个量子位的排列数全息性;这类似“量子避错编码原理”,从根本上解决了量子计算中的编码错误造成的系统计算误差问题。而时空的量子计算,类似生物DNA的双螺旋结构的双共轭编码,它是把实与虚、正与负双共轭编码组织在一起的量子计算机。这可叫做“生物时空学”,这其中的“熵”,也类似“宏观的熵”,不但指混乱程度,也指一个范围。时间指不指一个范围?从“源于生活”来说,应该指。因此,所有的位置和时间都是范围。位置“熵”为面积“熵”,时间“熵”为热力学箭头“熵”。其次,类似N数量子元和N数量子位的二元排列,与N数行和N数列的行列式或矩阵类似的二元排列,其中有一个不相同,是行列式或矩阵比N数量子元和N数量子位的二元排列少了一个量子位,这是否类似全息原理,N数量子元和N数量子位的二元排列是一个可积系统,它的任何动力学都可以用低一个量子位类似N数行和N数列的行列式或矩阵的场论来描述呢?数学上也许是可以证明或探究的。

1、反德西特空间,即为点、线、面内空间,是可积的。因为点、线、面内空间与点、线、面外空间交接处趋于“超零”或“零点能”零,到这里是一个可积系统,它的任何动力学都可以有一个低一维的场论来实现。也就是说,由于反德西特空间的对称性,点、线、面内空间场论中的对称性,要大于原来点、线、面外空间的洛仑兹对称性,这个比较大一些的对称群叫做共形对称群。当然这能通过改变反德西特空间内部的几何来消除这个对称性,从而使得等价的场论没有共形对称性,这可叫新共形共形。如果把马德西纳空间看作“点外空间”,一般“点外空间”或“点内空间”也可看作类似球体空间。反德西特空间,即“点内空间”是场论中的一种特殊的极限。“点内空间”的经典引力与量子涨落效应,其弦论的计算很复杂,计算只能在一个极限下作出。例如上面类似反德西特空间的宇宙质量轨道圆的暴涨速率,是光速的8.88倍,就是在一个极限下作出的。在这类极限下,“点内空间”过渡到一个新的时空,或叫做pp波背景。可精确地计算宇宙弦的多个态的谱,反映到对偶的场论中,我们可获得物质族质量谱计算中一些算子的反常标度指数。

2、这个技巧是,弦并不是由有限个球量子微单元组成的。要得到通常意义下的弦,必须取环量子弦论极限,在这个极限下,长度不趋于零,每条由线旋耦合成环量子的弦可分到微单元10的-33次方厘米,而使微单元的数目不是趋于无限大,从而使得弦本身对应的物理量如能量动量是有限的。在场论的算子构造中,如果要得到pp波背景下的弦态,我们恰好需要取这个极限。这样,微单元模型是一个普适的构造,也清楚了。在pp波这个特殊的背景之下,对应的场论描述也是一个可积系统。

全息照相的特点及其与普通照相的本质区别

一、全息照相的特点

全息照相的特点是记录被摄物体反射或透射光波中全部信息(振幅、相位)。全息照相不仅记录了被摄物体的反射光波强度(振幅),而且还记录了反射光波的相位。通过一束参考光束和一束被摄物体上的反射光束在感光胶片上叠加而产生干涉图样,可以实现上述目的。

二、全息照相与普通照相的区别

(一)记录信息不同

1、普通照相利用透镜成像原理,在感光胶片/器件上记录反映被摄物体表面反射光的强弱,即反射光的振幅信息。

2、全息照相利用光的干涉原理,记录被摄物体反射或透射光波中的全部光信息,包括振幅和相位。

(二)物象之间的关系不同

1、普通照相过程物象之间是点点对应的关系,即一个物点对应像平面中的一个像点。

2、全息照相过程物象之间是点面对应的关系,即每一个物点所发射的光束直接落在记录介质整个平面上。反过来说,全息图中每一个局部都包含了物体各点的光信息。

(三)图像不同

1、普通照相得到的是二维平面图像。

2、全息摄影得到的是三维立体图像。

参考资料:

百度百科——全息摄影(全息照相)

百度百科——拍照(照相)

全息照相与普通照相的区别

两者的区别:普通照相只能存贮被摄物体光强度的空间分布,不能满足人们希望在特定环境下能够感知真实3D场景的要求;而全息照相是通过记录照射物体的物光波与相应的参考光波的干涉条纹,从而记录下包括物体振幅(光强)和相位在内的全部光场信息,故称“全息”。

全息照片是指用全息照相技术拍摄的照片。全息照相即将激光技术用于照相,在底片上记录下物体的全部光信息,而不像普通照相仅仅是记录物体的某一面投影。因此当底片上的物体重现时,在观看者的眼里显得异常逼真,它产生的视觉效应,完全与观看实物时一模一样。

全息照片( hologram)是一种记录被摄物体反射(或透射)光波中全部信息的先进照相技术。全息照相的原理是依据光的干涉原理,利用两束光的干涉记录被摄物体的信息。全息照片不用一般的照相机而要一台激光器。激光束被分光镜一分为二,其中一束照到被拍摄的景物上,被称物光束;另一束直接照到感光胶片即全息干板上,称为参考光束。

全息照相的技术应用

全息照相还可以将珍贵的历史文物记录下来,万一有文物古迹遭到严重破坏,即使荡然无存,我们仍然可以根据全息照相重建。比如像北京圆明园那样的名胜,当年被英法联军焚毁,虽然打算重建,因为不知道整个面貌,就难以完全恢复。如果全息照相提早100多年发明的话,事情就好办了。

全息照相也包含着丰富的信息,而且完全取决于制作时采用的景物和拍摄方式,就像加了密码一样。没有原始印版,无法复制。因而,它成为防止伪造的有效手段。已经在纸币、信用卡、磁卡及外交签证等凭证上出现各种全息标识以防伪造。在我国,也已有不少厂商采用全息照相商标来防止有人伪造商标,欺骗顾客。

(5分)下列说法中不正确的是(选对1个给2分,选对2个给4分,选对3个给5分,每选错1个扣3分,最低得分为0

ACE

试题分析:泊松亮斑的本质是光绕过盘的边缘产生的衍射现象,A错误;在同一种物质中,不同波长的光波的传播速度不一样,波长越短,波速越小,B正确;全息照片的拍摄利用了光的干涉原理,即两束光频率必须相同,要求参考光和物光有很高的相干性,C错误;经典力学的时空观就是一个绝对的时空观,时间与空间、物体的运动无关,D正确;声波属于机械波,具有机械波的性质。机械波、电磁波都能产生反射、折射、干涉、衍射等现象,但它们产生机理不同,E错误。

好了,今天关于“全息照相利用了光的什么原理”的话题就到这里了。希望大家能够通过我的讲解对“全息照相利用了光的什么原理”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。

【版权声明】

本页面文章全息照相利用了光的什么原理内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。