光合作用的概念和实质 光合作用的实验和意义是什么

光合作用的概念和实质 光合作用的实验和意义是什么

很高兴有机会和大家一起谈论光合作用的意义和实质的话题。这个问题集合包含了一些常见和深入的问题,我将详细回答每一个问题,并分享我的见解和观点。

光合作用的概念和实质

光合作用是指植物和一些微生物通过光能转化为化学能的过程。以下是详细解释和实质:

1.光合作用的概念:

光合作用是指植物和一些蓝藻、藻类等光合有机体利用光能将二氧化碳和水合成有机物质(如葡萄糖)的过程。它是维持地球生态系统稳定的重要过程,并提供了氧气和有机物质供给其他生物。

2.光合作用的基本过程:

光合作用包括两个阶段,光反应和暗反应。

a.光反应:光反应发生在叶绿体内的光合体系中,通过叶绿素吸收太阳光的能量,产生高能电子和ATP(三磷酸腺苷)等能量载体。

b.暗反应:暗反应发生在叶绿体基质中,利用光反应中生成的能量和ATP,将CO2还原为有机物质,如葡萄糖。这个过程称为碳固定,主要是通过Calvin循环完成。

3.光合作用的关键组分:

光合作用涉及到多个关键组分,如叶绿素、光合色素、光合膜等。

a.叶绿素:叶绿素是植物中最常见的光合色素之一,它能够吸收太阳光的能量,并参与光反应中的电子传递过程。

b.光合色素:除叶绿素外,还存在其他类似的色素,如叶黄素、类胡萝卜素等。它们能够吸收不同波长的光,并扩大植物对太阳光的吸收范围。

c.光合膜:光合膜是叶绿体内包裹叶绿素的膜结构,其中包含了光合作用的关键酶和蛋白质。

4.光合作用的产物和影响因素:

光合作用的主要产物是氧气和有机物质,其中有机物质可以用来提供植物生长和代谢所需的能量。光合作用的速率受到多个因素的影响,如光强度、温度、二氧化碳浓度、水分和养分的供应等。

5.光合作用在生态系统中的作用:

光合作用是维持地球生态系统稳定的重要过程之一。它能够提供氧气供给其他生物呼吸,同时通过产生有机物质,为食物链中的其他生物提供能量来源。

6.光合作用的意义:

光合作用不仅对植物和微生物自身具有重要意义,还对整个地球的生物圈和环境具有重大影响。它能够保持氧气和二氧化碳的平衡,维持大气中的氧气含量,并降低温室效应。

以上是关于光合作用的概念和实质的解释。光合作用是植物和一些微生物利用光能将二氧化碳和水转化为有机物质的过程,其中光反应和暗反应是光合作用的基本过程。它在生态系统中起着重要的作用,并对整个地球的生物圈和环境产生影响。

光合作用的实质是什么?

实质是绿色植物利用太阳的光能,同化二氧化碳和水,制造有机物质并释放氧气的过程。光合作用所产生的有机物主要是碳水化合物,并释放出能量。光合作用是地球上唯一大规模地把无机物转变为有机物,把光能转变为化学能的过程。光合作用是一个巨型能量转换过程,是把无机物变成有机物的重要途径,是调节大气氮氧平衡的重要手段,它对整个生物界和人类的生存发展,以及保持自然界的生态平衡具有极其重要的意义。

光合作用的实验和意义是什么

可以根据影响光合作用的因素来控制其变量,做对比实验后检测作用后的氧气浓度。

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

光合作用的过程是一个比较复杂的问题,从表面上看,光合作用的总反应式似乎是一个简单的氧化还原过程,但实质上包括一系列的光化学步骤和物质转变问题。根据现代的资料,整个光合作用大致可分为下列3大步骤:①原初反应,包括光能的吸收、传递和转换;②电子传递和光合磷酸化,形成活跃化学能(ATP和NADPH);③碳同化,把活跃的化学能转变为稳定的化学能(固定CO2,形成糖类)。在介绍光合作用反应过程前,对光合作用过程中涉及的光合色素及光系统进行一定的了解是必要的。

外部影响因素

1. 光照

(1)光强度对光合作用的影响

光合作用是一个光生物化学反应,所以光合速率随着光照强庋的增减而增减。在黑暗时,光合作用停止,而呼吸作用不断释放CO2;随着光照增强,光合速率逐渐增强,逐渐接近呼吸速率,最后光合速率与呼吸速率达到动态平衡相等。同一叶子在同一时间内,光合过程中吸收的CO2与光呼吸和呼吸作用过程中放出的CO2等量时的光照强度,就称为光补偿点。植物在光补偿点时,有机物的形成和消耗相等,不能积累干物质,而晚间还要消耗干物质,因此从全天来看,植物所需的最低光照强度,必须高于光补偿点,才能使植物正常生长。

(2)光质对光合作用的影响

光质也影响植物的光合效率。在自然条件下,植物会或多或少受到不同波长的光线照射例如,阴天的光照不仅光强弱,而且蓝光和绿光成分增多;树木的叶片吸收红光和蓝光较多,故树冠下的光线富含绿光,尤其是树木繁茂的森林更是明显。

2. 二氧化碳

二氧化碳是光合作用的原料,对光合速率影响很大。其主要是通过气孔进入叶片,加强通风或设法增施二氧化碳能显著提高作物的光合速率,对C3植物尤为明显。此外,植物对CO2的利用与光照强度有关,在弱光情况下,只能利用较低浓度的CO2,光合速率慢,随着光照强度的加强,植物就能吸收利用较高浓度的CO2,光合速率加快。

3. 温度

光合过程中的碳反应是由酶所催化的化学反应,而温度直接影响酶的活性,因此,温度对光合作用的影响也很大。除了少数的例子以外,一般植物可在10 ~ 35℃下正常地进行光合作用,其中以25 ~ 30℃最适宜,在35℃以上时光合作用就开始下降,40 ~ 50℃时即完全停止。在低温中,酶促反应下降,故限制了光合作用的进行。而在高温时,一方面是高温破坏叶绿体和细胞质的结构,并使叶绿体的酶钝化;另一方面,暗呼吸和光呼吸加强,光合速率便降低。

作用和意义

将太阳能变为化学能

植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一个巨型的能量转换站。

把无机物变成有机物

植物通过光合作用制造有机物的规模是非常巨大的。据估计,植物每年可吸收CO2约合成约的有机物。地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同化的。人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。

维持大气的碳-氧平衡

大气之所以能经常保持21%的氧含量,主要依赖于光合作用(光合作用过程中放氧量约)。光合作用一方面为有氧呼吸提供了条件,另一方面,的积累,逐渐形成了大气表层的臭氧(O3)层。臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。植物的光合作用虽然能清除大气中大量的CO2,但大气中CO2的浓度仍然在增加,这主要是由于城市化及工业化所致。

光合作用的意义是什么?

光合作用的意义:

①提供了物质来源和能量来源。

②维持大气中氧和二氧化碳含量的相对稳定。

③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。

影响光合作用的因素:

有光照(包括光照的强度、光照的时间长短)、二氧化碳浓度、温度(主要影响酶的作用)和水等。这些因素中任何一种的改变都将影响光合作用过程。如:在大棚蔬菜等植物栽种过程中,可采用白天适当提高温度、夜间适当降低温度(减少呼吸作用消耗有机物)的方法,来提高作物的产量。再如,二氧化碳是光合作用不可缺少的原料,在一定范围内提高二氧化碳浓度,有利于增加光合作用的产物。当低温时暗反应中(CH2O)的产量会减少,主要由于低温会抑制酶的活性;适当提高温度能提高暗反应中(CH2O)的产量,主要由于提高了暗反应中酶的活性。

光合作用是什么意思

光合作用是什么意思介绍如下:

绿色植物利用光能,使二氧化碳和水合成有机物并释放氧的过程。绝大多数生物都直接或间接地靠光合作用所提供的物质和能量而生存。农业上的许多丰产措施,实质上是充分利用光能,促进作物的光合作用,从而获得高产量。

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义

绿色植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程,称为光合作用。光合作用所产生的有机物主要是碳水化合物,并释放出能量

1990年,一种红藻化石在加拿大北极地区被发现,这种红藻是地球上已知的第一种有性繁殖物种,也被认为是已发现的现代动植物最古老祖先。对红藻化石的年龄此前没有形成统一看法,多数观点认为它们生活在距今约12亿年前。

为了确定这种红藻化石的年龄,研究人员专门到加拿大巴芬岛收集包含这种红藻化石的黑页岩并用铼锇同位素测年法分析,认为红藻化石有10.47亿年的历史。

在确认红藻化石年龄基础上,研究人员用一种名为“分子钟”的数学模型来计算基于基因突变率的生物进化事件。他们的结论是,约12.5亿年前,真核生物开始进化出能进行光合作用的叶绿素。

光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。

光合作用的实质 光合作用的应用

1、光合作用的实质:物质上,将无机物转换成有机物能量上,将活跃的化学能转化为稳定的化学能光合作用的原理叶绿体在阳光的作用下,把经有气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为淀粉,同时释放氧气。

2、光合作用的应用:农作物扣大棚,提高温度,增强光合作用,增强昼夜温差使作物糖分积累,如吐鲁番的葡萄。

光合作用的意义是什么简答

1、能量转换

植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人能所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。

2、无机物变成有机物的重要途径

植物每年可吸收二氧化碳转化出大量有机物。人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。

3、调节大气

大气之所以能经常保持21%的氧含量,主要依赖于光合作用光合作用一方面为有氧呼吸提供了条件,另一方面,氧气的积累,逐渐形成了大气表层的臭氧层。臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。

扩展资料:

光合作用原理

光合作用文字方程式:二氧化碳+水+光能->葡萄糖+氧气

植物与动物不同。对于绿色植物来说,在阳光充足的白天,将利用阳光的能量来进行光合作用,以获得生长发育必需的养分,就是所谓的 自养生物 。

这个过程的关键参与者是内部的叶绿体。叶绿体在阳光的作用下,把经由气孔进入叶子内部的二氧化碳和由根部吸收的水转变成为葡萄糖,同时释放出氧气:

参考资料:

百度百科 光合作用

好了,今天关于“光合作用的意义和实质”的话题就到这里了。希望大家能够通过我的讲解对“光合作用的意义和实质”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。

【版权声明】

本页面文章光合作用的意义和实质内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。