矩阵对角化的条件(矩阵对角化是什么意思)

经过矩阵的一系列行、列变换(初等变换)后,能得到一个只有主对角线上元素不全为零,而其他位置全为零的另一个矩阵(这个矩阵称为对角阵),这个过程就叫做矩阵的对角化。...接下来由新高三网小编为你整理了矩阵对角化的条件和步骤相关详细内容,我们一起来分享吧。
矩阵对角化的条件(矩阵对角化是什么意思)

矩阵对角化的条件

特别注意:不是所有矩阵A,都能找到相似矩阵为D的对角矩阵

对于,一个n×n的矩阵A(n阶方阵)

什么时候一定能被对角化:

矩阵A若含有:n个线性无关的特征向量,则A可被对角化

矩阵A若含有:n个不同的特征值,则A可被对角化

例:矩阵A(3×3)含有3个不同的特征值,则A可被对角化

例:矩阵A(n×n)含有含有n个不同的特征值,则A可被对角化

什么时候不一定能被对角化:

矩阵A若没有n个不同的特征值,A不一定能被对角化

在这种情形下有可能能被对角化,也有可能不能

例:矩阵A(3×3)含有2个不同的特征值

如:

(仅2个不同的特征值)

此时:能否被对角化,不一定!

矩阵对角化是什么意思

矩阵对角化是线性代数中一个重要的概念,它是指将一个矩阵转化为对角矩阵的过程。具体来说,如果一个矩阵可以表示成一组特征向量的线性组合,那么这个矩阵就被称为可对角化的矩阵。

而对角化矩阵的意义在于,它可以被分解为一系列单一性质矩阵的乘积,从而可以更好地研究和应用矩阵的性质。

梳理:矩阵对角化

矩阵A−μE的秩为n−k,则A可对角化。13.若A是对称矩阵,则属于A的不同特征值的特征向量正交。14.若A是对称矩阵,则A必可对角化。矩阵A对角化的步骤1.求...更多

矩阵的相似对角化和合同对角化

上图表明,一个矩阵可以相似对角化不一定就可以正交相似对角化,原因在于特征向量正交化以后可能不再是原矩阵的特征向量,比如正交化后的β2不再是原矩...更多

【版权声明】

本页面文章矩阵对角化的条件和步骤内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。