绝对值不等式归纳整理(绝对值不等式的概念)

在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。公式:||a|-|b||≤|a±b|≤...接下来由新高三网小编为你整理了绝对值不等式归纳整理相关详细内容,我们一起来分享吧。
绝对值不等式归纳整理(绝对值不等式的概念)

在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。公式:||a|-|b||≤|a±b|≤|a|+|b|。(文章内容来源于网络,仅供参考)

绝对值不等式归纳整理

绝对值不等式的公式为:||a|-|b||≤|a±b|≤|a|+|b|。

当a、b异向如果是实数,就是ab正负符合不同时,||a|-|b||=|a±b|成立。另一个是||a|-|b||≤|a-b|≤|a|+|b|,这个等号成立的条件刚好和前面相反,当a、b异向如果是实数,就是ab正负符合不同时,|a-b|=|a|+|b|成立。

当a、b同方向时如果是实数,就是正负符合相同时,||a|-|b||=|a-b|成立。||a|-|b||≤|a-b|≤|a|+|b|,ΙabΙ=ΙaΙΙbΙ,|a/b|=|a|/|b|(b≠0),|a|<|b|可逆推出|b|>|a|,∥a|−Ib∥≤la+b|≤la|+lb|当且仅当ab≤0时左边等号成立,ab≥0时右边等号成立。

绝对值不等式的概念

绝对值是指一个数在数轴上所对应点到原点的距离,用“| |”来表示。|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离。在不等式应用中,经常涉及质量、面积、体积等,也涉及某些数学对象(如实数、向量)的大小或绝对值。它们都是通过非负数来度量的。

绝对值不等式几何意义

1、当a,b同号时它们位于原点的同一边,此时a与﹣b的距离等于它们到原点的距离之和。 2

2、当a,b异号时它们分别位于原点的两边,此时a与﹣b的距离小于它们到原点的距离之和。(|a-b|表示a-b与原点的距离,也表示a与b之间的距离)

高考数学——含绝对值不等式解析

高考中的含绝对值不等式问题,主要考察学生的数学思维能力和解题技巧。 这类问题不仅需要学生理解绝对值不等式的概念和性质,还需要学生具备一定的观察...更多

八上:利用绝对值定义,解答绝对值不等式

湘教版八年级上期数学《一元一次不等式组》. 一、原题再现 二、解题思路 本题是绝对值的定义来解答绝对值不等式. 绝对值的定义:一个数与原点的距离...更多

【版权声明】

本页面文章绝对值不等式归纳整理内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。