高中数学函数知识点#高中数学数列和不等式知识点

高中数学最难的三章是函数、数列和不等式、三角函数和平面向量。下面是这几章知识点的内容,快来看看吧。...接下来由新高三网小编为你整理了高中数学最难的三章相关详细内容,我们一起来分享吧。
高中数学函数知识点#高中数学数列和不等式知识点

高中数学函数知识点

一、函数的定义域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被开方数大于等于零;

3、对数的真数大于零;

4、指数函数和对数函数的底数大于零且不等于1;

5、三角函数正切函数y=tanx中x≠kπ+π/2;

6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。

二、函数的解析式的常用求法:

1、定义法;

2、换元法;

3、待定系数法;

4、函数方程法;

5、参数法;

6、配方法

三、函数的值域的常用求法:

1、换元法;

2、配方法;

3、判别式法;

4、几何法;

5、不等式法;

6、单调性法;

7、直接法

四、函数的最值的常用求法:

1、配方法;

2、换元法;

3、不等式法;

4、几何法;

5、单调性法

五、函数单调性的常用结论:

1、若f(x),g(x)均为某区间上的增(减)函数,则f(x)+g(x)在这个区间上也为增(减)函数。

2、若f(x)为增(减)函数,则-f(x)为减(增)函数。

3、若f(x)与g(x)的单调性相同,则f[g(x)]是增函数;若f(x)与g(x)的单调性不同,则f[g(x)]是减函数。

4、奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反。

5、常用函数的单调性解答:比较大小、求值域、求最值、解不等式、证不等式、作函数图象。

六、函数奇偶性的常用结论:

1、如果一个奇函数在x=0处有定义,则f(0)=0,如果一个函数y=f(x)既是奇函数又是偶函数,则f(x)=0(反之不成立)。

2、两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数。

3、一个奇函数与一个偶函数的积(商)为奇函数。

4、两个函数y=f(u)和u=g(x)复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数。

5、若函数f(x)的定义域关于原点对称,则f(x)可以表示为f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],该式的特点是:右端为一个奇函数和一个偶函数的和。

高中数学数列和不等式知识点

不等式的性质

①对称性

②传递性

③加法单调性,即同向不等式可加性

④乘法单调性

⑤同向正值不等式可乘性

⑥正值不等式可乘方

⑦正值不等式可开方

⑧倒数法则

注意事项

1、符号

不等式两边相加或相减同一个数或式子,不等号的方向不变。(移项要变号)

不等式两边相乘或相除同一个正数,不等号的方向不变。(相当系数化1,这是得正数才能使用)

不等式两边乘或除以同一个负数,不等号的方向改变。(除或乘1个负数的时候要变号)

2、解集

确定解集:

①比两个值都大,就比大的还大(同大取大)

②比两个值都小,就比小的还小(同小取小)

③比大的大,比小的小,无解(大大小小取不了)

④比小的大,比大的小,有解在中间(小大大小取中间)

三个或三个以上不等式组成的不等式组,可以类推。

3、数轴法

可以在数轴上确定解集:

把每个不等式的解集在数轴上表示出来,数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集。有几个就要几个。

证明方法

1、比较法

作差比较法:根据a-b>0↔a>b,欲证a>b,只需证a-b>0

作商比较法:根据a/b=1,

当b>0时,得a>b,

当b>0时,欲证a>b,只需证a/b>1,

当b<0时,得a

2、综合法

由因导果. 证明不等式时,从已知的'不等式及题设条件出发,运用不等式性质及适当变形推导出要证明的不等式. 合法又叫顺推证法或因导果法。

3、分析法

执果索因. 证明不等式时,从待证命题出发,寻找使其成立的充分条件. 由于”分析法“证题书写不是太方便,所以有时我们可以利用分析法寻找证题的途径,然后用”综合法“进行表述。

4、放缩法

将不等式一侧适当的放大或缩小以达到证题目的,已知A

5、数学归纳法

证明与自然数n有关的不等式时,可用数学归纳法证之。

用数学归纳法证明不等式,要注意两步一结论。

在证明第二步时,一般多用到比较法、放缩法和分析法。

6、反证法

证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。

7、换元法

换元的目的就是减少不等式中变量的个数,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。

8、构造法

通过构造函数、图形、方程、数列、向量等来证明不等式。

【版权声明】

本页面文章高中数学最难的三章内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。