函数的定义域和值域怎么求
函数的定义域和值域求法如下:
分母不为零;偶次根式的被开方数非负;对数中的真数部分大于0;指数、对数的底数大于0,且不等于1;y=tanx中x≠kπ+π/2。y=cotx中x≠kπ等等,值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:化归法;图象法(数形结合),函数单调性法,配方法,换元法,反函数法(逆求法),判别式法,复合函数法,三角代换法,基本不等式法等。
定义域和值域是什么
定义域指的是自变量的取值范围;值域是指因变量的取值范围。自变量是指研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因。
因变量(dependent variable),函数中的专业名词,函数关系式中,某些特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量。
定义域和定义域的表示方法在函数y=f(x)中,定义域指的是自变量x的所有取值所构成的“集合”(或“区间”)。定义域要表示成集合形式或区间形式。当定义域中的x的取值个数有限时,则不能表示成区间形式,而只能表示成集合形式。
资料扩展
函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
定义域的求法
求法。
(1)若函数是整式,则定义域为R,如一次函数,二次函数(抛物线)等。
(2)若函数是分式,则定义域为使分母不为零的全体实数,如反比例函数。
(3)若函数是偶次根式,则定义域为使被开方数为非负数的全体实数,即:y=x^(1/2n),n为自然数。
(4)若函数是复合函数,则定义域由复合的各基本函数的定义域组成的不等式组确定。
函数的对称性常用结论为:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具
备对称性中的中心对称,该点称为该函数的对称中心。
定义域怎么求
定义域是函数y=f(x)中的自变量x的范围。
求函数的定义域需要从这几个方面入手:
(1),分母不为零?
(2),偶次根式的被开方数非负。
(3),对数中的真数部分大于0。
(4),指数、对数的底数大于0,且不等于1
(5),y=tanx中x≠kπ+π/2,
y=cotx中x≠kπ等等。值域是函数y=f(x)中y的取值范围。
常用的求值域的方法:(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法,(11)分离常数法等。
扩展资料:
1、化归法:
在解决问题的过程中,数学往往不是直接解决原问题,而是对问题进行变形、转化,直至把它化归为某个(些)已经解决的问题,或容易解决的问题。?
把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。
2、复合函数法:
多元函数微分学是数学分析领域的重要内容。在多元函数微分学中,主要讨论的是多元函数的可微性及其应用,而二元函数的可微性则是多元函数可微性研究的重点。复合函数微分法则是二元函数可微性的进一步研究。
3、三角代换法:
三角代换是利用三角函数的性质将代数或几何问题转化成三角问题,使题目得以突破的解题方法。实质是换元思想,体现了“三角”是数学中的工具的特征,恰当地利用三角代换有助于培养学生联想和类比的能力。
4、换元法:
换元法又称变量替换法 , 是我们解题常用的方法之一 。利用换元法 , 可以化繁为简 , 化难为易 , 从而找到解题的捷径 。
解一些复杂的因式分解问题,常用到换元法,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化,明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用。
5、分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
求函数定义域 函数定义域的求法
1、组合函数:由若干个基本函数通过四则运算形成的函数,其定义域为使得每一部分都有意义的公共部分。原则:(1)分式的分母不能为零;(2)偶次方根的内部必须非负即大于等于零;(3)对数的真数为正,对数的底数大于零且不等于1;(4)x0中,x≠0。
2、复合函数:若y=发(u),u=g(x),则y=f[g(x)]就叫做f和g的复合函数。其中y=f(U)叫做外函数,u=g(x)叫做内函数。例如:(1)已知y=f(x)的定义域D1,求y=f[g(x)]的定义域D2。解法:解不等式:g(x)∈D1(2)已知y=f[g(x)]的定义域D1,求y=f(x)的定义域D2。解法:令u=g(x),x∈D1,求函数g(x)的值域。
求函数定义域的常用方法
常见的用解析式表示的函数 的定义域可以归纳如下:
(1)若 是整式,则 的定义域是 .
(2)若 是分式,则要求分母不为零.
(3)若 ,则要求 。
(4)当 为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合;如 ,则要求 .
(5) 的定义域是 .
(6)若同时出现上述情况,则先分别找出各自的定义域,然后求交集.
(7)复合函数的定义域是复合的各基本的函数定义域的交集.
(8)对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约.
(9)求含参数的函数的定义域时应进行分类讨论.
(10)抽象函数的定义域
对于无解析式的函数的定义域问题,要注意如下几点:
① 的定义域为 ,指的是 的取值范围为 ,而不是 的取值范围为 .
②若已知 定义域为 ,求函数 的定义域,由不等式 解出即可;
若已知 的定义域为 ,求 的定义域,相当于 时,求 的值域(即 的定义域)
定义域怎么求?
求函数定义域的方法是设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
设A,B是两个非空数集,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。记作y=f(x),x∈A,或y=g(t),t∈A,其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。
其主要根据为:
1、分式的分母不能为零。
2、偶次方根的被开方数不小于零。
3、对数函数的真数必须大于零。
4、指数函数和对数函数的底数必须大于零且不等于1。
求函数值域的方法
1、图像法
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
5、换元法
包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。
6、判别式法
判别式法即利用二次函数的判别式求值域。
7、复合函数法
设复合函数为f[g(x),]g(x)为内层函数,为了求出f的值域,先求出g(x)的值域,然后把g(x)看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据f(x)函数的性质求出其值域。
8、不等式法
基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。
9、化归法
用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
10、分离常数法
把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。
函数定义域的求法
求函数定义域的方法:函数f(x+1)的定义域为(0,1),指的是x取值在0,1之间,那么x+1取值为1,2之间。设y=x+1,则f(x+1)=f(y),在f(y)这个函数中,自变量是y,其取值范围是1,2,所以f(y)的定义域是(1,2)。
求函数的定义域需要从这几个方面入手:
1、分母不为零。
2、偶次根式的被开方数非负。
3、对数中的真数部分大于0。
4、指数、对数的底数大于0,且不等于1。
5、y=tanx中x≠kπ+π/2。
6、y=cotx中x≠kπ。
六种常见函数的定义域如下
1、正切函数tanf(x)型,解f(x)≠kπ+π/2,k为整数。
2、分母不为0。
3、对数函数的真数大于0。
4、三角函数中的正切和余切的范围(如tanx不能取x=90度等)。
5、三角函数正切函数中;余切函数中。
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
求函数定义域,值域的求法。各种类型的都要
函数定义域的三类求法
一、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。
二.
给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。
三.
给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。
函数值域的求法:
①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:
的形式;
②逆求法(反求法):通过反解,用
来表示
,再由
的取值范围,通过解不等式,得出
的取值范围;常用来解,型如:
④换元法:通过变量代换转化为能求值域的函数,化归思想;
⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;
⑥基本不等式法:转化成型如:
,利用平均值不等式公式来求值域;
⑦单调性法:函数为单调函数,可根据函数的单调性求值域。
⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
求函数定义域的方法都有哪些?
求函数定义域的方法:
1、分式的分母不等于零。
2、偶次方根的被开方数大于等于零。
3、对数的真数大于零。
4、指数函数和对数函数的底数大于零且不等于1。
5、三角函数正切函数中;余切函数中。
6、如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围。
常见题型。
常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题。
如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数等等。
好了,今天我们就此结束对“函数定义域 的求法”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。
本页面文章函数定义域 的求法内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。