一元二次方程的解法因式分解
关于一元二次方程的解法因式分解如下:
因式分解法解一元二次方程步骤 将方程变形,使方程的右边为零;将方程的左边因式分解; 根据若A·B=0,则A=0或B=0,将解一元二次方程转化为解两个一元一次方程.
一元二次方程的解法有:直接开平方法;烂迅配镇轮方法;公式法;因式分解法。因式分解的几种方法:提公因式法、运饥旅此用公式法、分组分解法、十字相乘法、拆项和添项法、待定系数法、双十字相乘法、轮换对称法等.
直接开平方法:依据的是平方根的意义,步骤是:将方程转化为x=p或(mx+n)=p的形式;分三种情况降次求解:当p>0时;当p=0时;
当p<0时,方程无实数根。需要注意的是:直接开平方法只适用于部分的一元二次方程,它适用的方程能转化为x=p或(mx+n)=p的形式,其中p为常数,当p≥0时,开方时要取“正、负。
二、配方法:把一般形式的一元二次方程ax+bx+c=0(a≥0)左端配成一个含有未知数的完全平方式,右端是一个非负常数,进而可用直接开平方法来求解。一般步骤:移项、二次项系数化成1,配方,开平方根。配方法适用于解所有一元二次方程。
公式法:利用求根公式,直接求解。把一元二次方程的各系数代入求根公式,直接求出方程的解。一般步骤为:把方程化为一般形式;确定a、b、c的值;计算b-4ac的值;(4)当b-4ac≥0时,把a、b、c及b-4ac的值代入一元二次方程的求根公式,求得方程的根;
当b-4ac<0时,方程没有实数根。需要注意的是:公式法是解一元二次方程的一般方法,又叫万能方法,对于任意一个一元二次方程,只要有解,就一定能用求根公式解出来。
求根公式是用配方法解一元二次方程的结果,用它直接解方程避免繁杂的配方过程。因此没有特别要求,一般不会用配方法解方程。
一元二次方程组怎么解
解一元二次方程组需要进行消元、代入等操作,可以通过三种方法进行求解:配方法、消元法和用矩阵方法。
以下将分别介绍这三种方法的具体步骤和注意事项。
一、配方法。
1、首先,将两个方程转化为标准形式,即将各项整理到等式左边,将常数项移到等式右边。
2、然后,将其中一个方程中的一项系数乘以一个常数,使得这个系数与另一个方程中对应的项的系数相等(或者相差一个常数倍)。
3、接着,将两个方程相加或相减,消去这个相等的项,得到一个关于一个未知数的一元二次方程。
4、求解这个一元二次方程,求出一个根。
5、将这个根带入原来的其中一个方程,求解另一个未知数的值。
二、消元法。
1、将两个方程转化为标准形式。
2、通过乘法,消去一个未知数的平方项。
3、将两个方程相加或相减,消去这个未知数的平方项并得到一个关于这个未知数的一次方程。
4、求解这个一次方程,求出这个未知数的值。
5、将这个未知数的值代入其中一个方程,求解另一个未知数的值。
三、矩阵方法。
1、将两个方程转化为标准形式。
2、将系数矩阵和常数项矩阵拼接成增广矩阵。
3、对增广矩阵进行行变换,将其化为上三角矩阵或者行简化阶梯形矩阵。
4、通过回代法,求解未知数的值。
扩展知识:
1、解一元二次方程组时,需要注意判别式是否为正数,如果不是,则方程组无实数解,但可能存在复数解。
2、在使用配方法时,要注意选取合适的常数使得可消元性更高。
3、在使用消元法时,要注意避免一些常见的错误,如漏掉某些项、将某些项错写为相反数等等。
4、算法具有通用性,可以解决各种类型的一元二次方程组,如含有整数系数、含有分数系数、含有根式系数等等。
5、解一元二次方程组的方法在实际应用中有很多场景,比如物理学中一些关于速度和时间的问题需要用到这个技巧,工程学中一些关于电路和机械运动的问题也需要用到这个技巧。
一元二次方程的5种解法
一元二次方程的5种解法如下:
1、直接开平方法。
对于直接开平方法解一元二次方程时注意一般都有两个解,不要漏解,如果是两个相等的解,也要写成x1=x2=a的形式,其他的都是比较简单。
2、配方法。
在化成直接开平方法求解的时候需要检验方程右边是否是非负的,如果是则利用直接开平方法求解即可,如果不是,原方程就没有实数解。
3、公式法。
公式法是解一元二次方程的根本方法,没有使用条件,因此是必须掌握的。用公式法的注意事项只有一个就是判断“△”的取值范围,只有当△≥0时,一元二次方程才有实数解。
4、因式分解法。
因式分解,在初二下学期的时候重点讲了,之前也有相关的文章,重要性毋庸置疑,在一元二次方程里,因式分解法用的还是挺多的,难度非常容易调节,所以也是考试出题老师非常喜欢的一类题型。
5、图像解法。
一元二次方程ax2+bx+c=0的根的几何意义是二次函数y=ax2+bx+c的图像(为一条抛物线)与x轴交点的x坐标。
当△>0时,则该函数与x轴相交(有两个交点)。
当△=0时,则该函数与x轴相切(有且仅有一个交点)。
当△<0时,则该函数与轴x相离(没有交点)。
一元二次方程的判别式。
利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况。
一元二次方程ax+bx+c=0(a不等于0)的根与根的判别式有如下关系:△=b2-4ac。
①当△>0时,方程有两个不相等的实数根。
②当△=0时,方程有两个相等的实数根。
③当△<0时,方程无实数根,但有2个共轭复根。
(8-x)?=3?+2?
1.??
2.?
3.?
4.
5.
1.?
2.?2?
3.?3?
一元二次方程的解法是什么?
将一元二次方程配成完全平方的形式,再利用直接开平方法求解的方法。
(1)用配方法解一元二次方程的步骤:
①把原方程化为一般形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
(2)配方法的理论依据是完全平方公式。
(3)配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方。
扩展资料:
一元二次方程成立必须同时满足三个条件:
①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。
②只含有一个未知数。
③未知数项的最高次数是2。
一元二次方程详细的解法,越相信越好。
方法1:配方法(可解全部一元二次方程)
如:解方程:x^2-4x+3=0 把常数项移项得:x^2-4x=-3 等式两边同时加1(构成完全平方式)得:x^2-4x+4=1 因式分解得:(x-2)^2=1 解得:x1=3,x2=1
小口诀: 二次系数化为一 常数要往右边移 一次系数一半方 两边加上最相当
方法2:公式法(可解全部一元二次方程)
首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac0时 x有两个不相同的实数根
当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根
3.因式分解法(可解部分一元二次方程)
(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”. 如:解方程:x^2+2x+1=0 利用完全平方公式因式分解得:(x+1_^2=0 解得:x1=x2=-1
4.直接开平方法
5.代数法。(可解全部一元二次方程) ax^2+bx+c=0 同时除以a,可变为x^2+bx/a+c/a=0
设:x=y-b/2 方程就变成:(y^2+b^2/4-by)+(by+b^2/2)+c=0 X错,应为 (y^2+b^2/4-by)除以(by-b^2/2)+c=0
再变成:y^2+(b^22*3)/4+c=0 X/y^2-b^2/4+c=0 y=±√[(b^2*3)/4+c] X/y=±√[(b^2)/4+c]
一元二次方程的解法因式分解法
因式分解法解一元二次方程的口诀:一移,二分,三转化,四再求根容易得。步骤:将方程右边化为0;将方程左边分解为两个一次式的积;令这两个一次式分别为0,得到两个一元一次方程;解这两个一元一次方程,它们的解就是原方程的解。
提取公因式法:am+bm+cm=m(a+b+c).
公式法:a2-b2=(a+b)(a-b),a2±2ab+b2=(a±b)。
十字相乘法:1ax2+(a+b)x+ab=(x+a)(x+b).
怎么解一元二次方程
一元二次方程解法:
1. 第一步:解一元二次方程时,如果给的不是一元二次方程的一般式,首先要化为一元二次方程的一般式,再确定用什么方法求解。
2. 解一元二次方程的常用方法:
(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。
解法步骤:①把常数项移到等号右边,
②方程中每项都除以二次项系数,
③开平方求出未知数的值:
(2)因式分解法:把一元二次方程化为一般式后,如果方程左边的多项式可以因式分解的话,可以使用此方法求解。
解法步骤:①把方程的左边因式分解,转化为两个因式乘积的形式;
②令每个因式分别等于0,进而求出方程的两个根;
例:解关于x的方程:
解:把方程左边因式分解成:(x-m)(x+n)=0
∴x1=m,x2=n
(3)配方法:当一元二次方程化为一般式后,不能用直接开方和因式分解的方法求解时,可以使用此方法。
解法步骤:①若方程的二次项系数不是1,方程中各项同除以二次项系数,使二次项系数为1;
②把常数项移到等号右边;
③方程两边同时加上一次项系数一半的平方;
④方程左边变成一个完全平方式,右边合并同类项,变为一个实数;
⑤方程两边同时开平方,从而求出方程的两个根;
例:解方程:
解:方程两边同除以3得:
移项,得:
∴
即:
∴ x+2=±√6
∴
(4)公式法:利用一元二次方程的求根公式解一元二次方程,适用于所有的一元二次方程。
求根公式:,其中a≠0。
解法步骤:①先把一元二次方程化为一般式;’
②找出方程中a、b、c等各项系数和常数值;
③计算出b2-4ac的值;
④把a、b、b2-4ac的值代入公式;
⑤求出方程的两个根;
例:解方程:
解:(1)方程中:a=1,b=-4,c=4
∴x={-(-4)±√0}/2×1=2,∴原方程根为
好了,关于“一元二次方程的解法及步骤”的话题就讲到这里了。希望大家能够对“一元二次方程的解法及步骤”有更深入的了解,并且从我的回答中得到一些启示。
本页面文章一元二次方程的解法及步骤内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。