高中数学应该怎么学才最有效,举几个实例,谢谢 2022年数学幂函数知识点大全

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力...接下来由新高三网小编为你整理了高二数学知识点总结(最全版)高三网相关详细内容,我们一起来分享吧。
高中数学应该怎么学才最有效,举几个实例,谢谢 2022年数学幂函数知识点大全

高中数学应该怎么学才最有效,举几个实例,谢谢

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,对大家都有益。

参考资料:

晴天Love猫

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,大家都有益。

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考: 一、课内重视听讲,课后及时复习。 新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。 二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。 三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。 在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。 由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。 有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。 至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。 2‘学习立体几何要有较好的空间想象能力,而培养空间想象能力的办法有二:一是勤画图;二是自制模型协助想象,如利用四直角三棱锥的模型对照习题多看,多想。但最终要达到不依赖模型也能想象的境界。 3、学习解析几何切忌把它学成代数、只计算不画图,正确的办法是边画图边计算,要能在画图中寻求计算途径。 4、在个人钻研的基础上,邀几个程度相当的同学一起讨论,这也是一种好的学习方法,这样做常可以把问题解决得更加透彻,大家都有益。

怎样学习数学,物理,生物,化学?详细点!我是高二的,谢谢了

精华高二数学+物理+语文+化学+生物学习方法

进入高二就意味着将有一年就要迎接高考的来临,为实现升学的美好理想,高二一年的学习质量是关健,因此不仅要有信心和毅力,更要有科学有效的学习方法,它就象杠杆一样,能起到事半功倍的效果.

一、用好课本.有的同学说:“课本有什么好看的?还不就是几个定义、定理、公式?”孰不知,就是那么几个定义、定理、公式,却以其深刻严谨的思想内涵,筑起了一幢幢数学大厦,而对数学学习感到困难者,通病之一就是对它缺乏透彻而全面的理解和掌握.所以,全面、深刻地理解和掌握定义、定理、公式是搞好复习,提高成绩的一项重要任务.要用好课本应侧重以下几个方面.

1.对数学概念重新认识,深刻理解其内涵与外延,区分容易混淆的概念.如以“角”的概念为例,课本中出现了不少种“角”,如直线的斜角,两条异面直线所成的角,直线与平面所成的角,复数的辐角主值,夹角、倒角等,它们从各自的定义出法,都有一个确定的取值范围.如两条异面直线所成的角是锐角或直角,而不是钝角,这样保证了它的唯一性.对此理解、掌握了才不会出现概念性错误.

2.尽一步加深对定理、公式的理解与掌握,注意每个定理、公式的运用条件和范围.如用平均值不等式求最值,必须满三个条件,缺一不可.有的同学之所以出错误,不是对平均值不等式的结构不熟悉,就是忽视其应满足的条件.又如棣莫佛定理是对复数三角形式来说的.如数列中的前n 项和与无穷数列各项和S(S=)含义是不同的,等等.

3.掌握典型命题所体现的思想与方法.如对等式的证明方法,就给大家提供了求二项式展开式或多项式展开式系数和的普遍方法.

二、上好课.同学们学习的主阵地是课堂,课堂的学习质量是影响学习成绩的关一环.

1.会听课.有的同学会说:“谁还不会听课?”其实不然.会听课就是要积极思考.当老师提出问题后,就要抢在老师前面思考怎么办?想一想解决这个问题的所有可能的途径和方法,然后在和教师讲的去比较,可能有的想法行有的不行,可能老师的方法更好,可能你的方法还简明、还奇妙.而不要等老师一点一点告诉你,自己仅仅是听懂了就认为学会了,这实际上是只得怀疑的.难怪不少同学说老师一讲就会,自己一做就错,原因是自己没有真正去思考,也就不可能变成自己的东西.所以积极思考是上好课最为重要的环节,当然也学习的主要方法.

2.做笔记.上课老师讲的含有重要概念,各种问题常规思想与方法,易错的问题,以及一些很适用的规律和技能等,所以,上课做好笔记是必要的.

3.要及时复习.根据记忆规律,复习应及时,每天一复习,一周一复习,每单一总结为好.

三.多做题.学数学离不开做题,高三学习更要做题,不做一定量习题是不可能学好数学的,但是要注意以下几个问题:

1.难度适当.现在复习资料多,题多,复习时应按老师的要求.且不能一味做难题、综合题,好高骛远,不但会耗费大量时间,而且遇到不会做题多了就会降低你的自信心,养成容易忽略一些看似简单的基础问题和细节问题,在考试时丢了不丢的分,造成难以弥补的损失.因此,练习时应从自已的实际情况出发,循序渐进.应以基础题、中档题为主,适当做一些综合性较强的题以提高能力和思维品质

2.题贵在精.在可能的情况下多练习一些是好的,但贵在精.首先选题应结合《考试说明》的要求和近几年高考题的考查的方向去选,重点体现“三基”,体现“通性、通法”.其次做题时的思考和总结非常重要,每做一道题都要回想一下自己的解题思路,看看能不能一题多解,举一反三,并注意合理运算,优化解题过程.第三对重点问题要舍得划费时间,多做一些题.第四在复习过程中也要不断做一些应用题,来提高阅读理解能力和解决实际问题的能力,这是高考改革的方向之一. 3.重视改错.有的同学只重视解题的数量而轻视质量,表现在做题后不问对错,尤其老师已经批阅过的也视而不见,这怎么能进步呢?错了不仅要改,还要记下来,分析造成错误的原因和启示,尤其是考试试卷更要注意.只有经过不断的改正错误,日积月累,才能提高. 4.注意总结.不仅包括题型、方法、规律的总结,还要掌握一些基本题.四.搞好每一阶段的复习.进入高三后基本上就开始复习了,要服从老师的计划和安排,扎扎实实完成每一阶段的任务,不能急于求成.一般分为四个阶段.

1.第一阶段是系统复习.时间大约九个月.重点是全面复习,侧重基础,即按章节进行,以“三基”为核心,系统而全面地弄清每一个知识点,熟练掌握通性、通法,并注重知识体系的形成.“三基”是指数学的基础知识、基本技能和基本方法.对“三基”的掌握需要一个过程,必须经过适量、适当的训练才能达到.因此,应养成一种好的学习习贯,把每一次练习都当成一次学习、巩固的机会,一看到问题就上联想这类问题所涉及的相关知识点和解决它的通法,逐渐对“三基”的掌握达到自动化,能随时拈来.注重知识体系的形成.对“三基”的复习,不是简单的重复,加强记忆,重要的是要深化认识,从本质上发现数学知识之间的联系,从而加以分类、整理、综合,逐渐形成一个条理化,秩序化、网络化的有机体,正真实现由厚到薄. 注意数学能力的提高.通过大量的解题练习,应在运算能力,逻辑思维能力,空间想象能力,利用所学知识分析问题和解决问题的能力等方面得到提高. 注意思想方法的应用.著名数学家波利亚指出:“完善的思想方法,犹如北极星,许多人通过它而找到正确的道路.”说明掌握思想方法是何等的重要.如某些比较得杂的代数问题如果利用数形结合的方法来做,就能轻松遇快地解决.

2.第二阶段是重点复习.时间大约为一个半月.重点是以提高“三性”,即知识与能力的综合性、应用性和创新性.这是99年以来考题的改革方向.经过第一阶段的复习,同学们对“三基”的掌握已经达到了一定的程度,接下来老师就要给同学们组织一些专题了.包括:知识内在联系型专题,如:函数、方程、不等式专题;函数与数列专题;函数图象与方程的曲线专题等. 思想方法类专题,如:函数与方程的思想方法;数形结合的思想方法;分类讨论的思想;运动与变换的思想方法;转化与化归的思想方法等.

应用问题专题.进一步加强各种类型应题的练习,提高阅读理解、建立数学模型的能力.

创新思维专题.加强思维训练,在“通性、通法”的基础上进行创造性思维,体现多一点,少一点算或不急于算.

同学们再努力,抓住机会,这一阶段搞好了会在知识与能力上有一个较大提升!

3.第三阶段是综合练习.时间大约一个月.重点是提高应试水平.通过综合试卷的反复练习,应在答题策略、时间分配,尤其是读题时的一次性感觉、一次性切入、一次性成功上加强训练.

4.第四阶段是保温和自由复习阶段.保持良好精神状态和平静的心理,坚信自己的实力,满怀信心迎接高考

高二物理学习方法

1、物理模型法

针对物理问题的特点,抓住其主要因素、排除次要因素、提出物理模型,将对具体问题的研究转化为对物理模型的研究。这种方法的思维过程是,分析物理问题的条件、研究对象、物理过程的特征,建立与之适应的物理模型,通过模型思维进行推理。

2、等效法

等效思维方法是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。例如我们学过的等效电路、等效电阻、合力与分力等效……。常见的等效法又“分解”、“合成”、等效类比、等效替换、等效变换、等效简化等,从而化繁为简,化难为易。

3、隔离法与整体法

隔离法是解决力学问题的基本方法。绝大多数物体总是相互关联,相互作用的,因此为解决问题方便,常将研究对象与其他物体隔离开来,但有时需要以整体为对象,此时要求整体内部个部分间有相同的加速度。

4、估算法

估算法是应用物理知识,把握问题的本质,抓住主要数量关系,忽略次要因素进行的数量级计算。这类考题主要不在“数”而在“理”,不追求数据精确而追求方法正确。物理估算题,在近几年高考试题中频频出现。由于物理估算题具有文字简洁、显示已知条件少、待求量与已知量之间联系隐蔽等特点,往往使考生束手无策,失分率很高。估算与精确计算相比,要求考生对所学的知识运用更灵活、思维更敏捷。

5、图象法

物理图象是形象描述物理状态、物理过程和物理规律的常用工具,也是应用数学知识解决物理问题的一个重要方面。正确的物理图象,能在我们分析物理问题时提供清晰的物理图景,图象往往能把与问题相关的多个因素同时展现出来,这祥,既有助于我们在分析问题时对相关的基本概念、基本规律的理解和记忆,也有助于我们把握相关物理量间的关系,有的问题甚至通过图象便可直接得到解答。因此,用图象来解题成了解物理题的常用方法之一。利用图象解物理题时,应该特别注意正确全面理解图象所表示的物理意义,例如一个在坐标图上表示的物理图象,它的坐标轴代表的是什么物理量?是什么单位?是标量坯是矢量?对于一些图象其图形相似而物理意义不相同的图象,如位移——时间图象和速度——时间图象、振动图象和波动图象等,应该注意区分而不能混淆。

6、极值法

描述某一过程或某一状态的物理量在其发展变化中,由于受到物理规律和条件的制约,其取值往往只能在一定范囿内才能符合物理问题的实际。而在这一范围内,该物理量可能有其最大值、最小值或者是确定其范围的边界值等一些特殊值。由此,物理问题中常常涉及到这些物理量的特殊值的问题,我们把这些问题称为极值问题,在各种习题和高考题中,此类问题是屡见不鲜的。

7、守恒法

用守恒定律及守恒量去分析和解决物理问题的方法,可称之为守恒法,在各种物理变化的过程中,往往存在着多种量的守恒,如质量守恒、电量守恒、动量守恒、能量守恒、机械能守恒等。利用守恒关系来建立和求解方程,往往可使问题得到较简捷的解答。守恒,往往是在一定条件下才成立的,因此在运用守恒法求解问题时先要注意对问题条件的分析,只有在其满足守恒条件时,才可用对应的守恒规律来求解问题。

总之,要搞好高考物理总复习,必须要有周密的计划、科学的方法、得力的措施,要重视对物理状态、物理情境、物理过程的分析,要加强信息迁移问题的训练,提高阅读理解能力和分析问题的能力,从而取得高考的胜利。

高二化学如何复习

高二化学复习是一项系统的学习工程,要提高复习效率,就需要注重学习方法的探索,不仅想方设法跟上老师的复习思路,还要根据自己的实际情况进行调整。如何来搞好今后一年的化学复习呢?省会某重点中学化学老师根据自己的教学和历届考生成功的经验,建议同学做好以下几点:

1.循序渐进,打好基础,辨析理清概念。要根据自己的学习情况制定较好的学习计划,使复习有计划、有目的地进行。既要全面复习,更要突出重点。要多看书,抓住教材中的主要知识精髓,特别是中学化学的核心内容,如物质结构、氧化还原反应、离子反应、元素化合物知识、电化学、化学实验、化学计算等。复习要注重基础,加强对知识的理解和能力的培养,力求做到“记住—理解—会用”。要针对自己的学习情况,查漏补缺,有重点有针对性地复习。

2.掌握原理,灵活应用,注重解题思路。

化学原理如元素守恒原则、氧化还原反应、电子得失守恒、化学平衡、物质结构的一般规律,要重点回顾。掌握化学基本原理和规律,在解题中灵活应用,拓宽解题思路,增强解题的技巧性。如应用守恒法、差量法、讨论法解一些计算题,可以提高解题的速率和准确性。推断有机物的结构,要抓住有机物官能团的转化规律和反应的基本类型。如有机物抓住烃、卤代烃、醇、醛、酸、酯的一系列变化关系。要通过复习提高灵活应用知识的能力,适当做一些综合性题,并储存在头脑中,高考时可以启发思维。要注重实验原理,高考化学实验题的比重较大,实验的复习要侧重于实验的基本操作,实验的分析、设计和评价,从“怎么做”到“为什么”,重视实验原理和实验方法,学会比较。

3.加强练习,温故知新,提高解题能力。

练习的方法较多,首先可以将做过的习题再有重点有选择地做一部分。其次要选好一本化学参考书,根据复习的进展,选做其中同步的习题。不要做一题对一题答案,应把一节或一单元做完再对答案,检查对错,加以订正,遇有不懂之处应通过一定的方式向同学或老师请教。还可以把今年各地的高考化学试题作为练习,检测一下自己目前的化学水平。练习时要注意分析解题的思路和方法。如针对物质结构中的“位、构、性”三者间的关系、等效平衡的应用、离子共存的条件、用守恒法解计算题等,多问为什么,不要陷入题海。做题可以检查对知识的把握程度,能开阔解题思路。

4.把握重点,消除盲点,切实做好纠错。

复习要突出重点、扫除盲点、加强弱点。分析近几年的高考化学试题,重点其实就是可拉开距离的重要知识点,即疑点和盲点;要走出“越基础的东西越易出错”的怪圈,除了思想上要予以高度重视外,还要对作业、考试中出现的差错,及时反思,及时纠正;对“事故易发地带”有意识地加以强化训练。每一次练习或考试后,要对差错做出详尽的分析,找出错误原因。

生物学科学习方法指导

高考生物复习思路应坚持以高考考试说明和大纲能力的要求为出发点,根据高考中题目的立意和表达形式的新变化,加以认真复习,重视培养学生的能力为生物复习的目标。

1、注重基础知识的梳理,形成知识网络

基础知识是学生解决问题的源泉。生物复习过程中,学生对基础知识加以整理和归类,使之成为知识链和知识网,便于理解性记忆和回顾。这样以利于系统地获得知识,并形成联系的观点,活跃思维。

2、注重图表图解表述问题,培养思维迁移能力

在复习时按照专题对图表图解进行复习,加强思维迁移能力的培养。如,光合作用和呼吸作用的图解、有丝分裂和减数分裂的图解、生态系统的能量流动图解和生态系统的物质循环图解等。以下以生态系统的能量流动为例说明(图解见课本),复习时分析图解:(1)在食物链中能量储存于有机物,有机物的多少即能量的多少,(2)依据食物链中能量流动特点:低营养级高能量,高营养级低能量,(3)依据图解写出本题的合理的食物链,(4)依据食物链中生物的捕食关系,分析各营养级生物的数量变化关系。

3、突出比较法的运用,有利于培养良好的思维方法

选择运用比较法,把课本中相关的知识放在一起进行比较,有利于将知识系统化,并形成知识结构网络。如,通过对知识的比较,学生对教材中有联系的前后知识加以比较,形成系统的知识体系,培养良好的思维方法。因此,必须根据教材的内容,前后知识的联系,进行比较法的学习。例如,原核细胞和真核细胞的比较、有丝分裂和减数分裂的比较、植物吸水和吸收矿质元素离子的比较、新陈代谢基本类型的比较、育种(杂交育种、诱变育种、单倍体育种、多倍体育种)的比较等,这样易于理解和掌握知识,有利于发展学智力、培养能力。

4、强化给材料题的复习,利于良好思维品质的形成。

围绕问题进行分析、归纳、综合和解决问题,这种复习充分体现了认知规律,利于积极思维。这种创设情景、提供信息的材料题,打破了只重视知识定论、死记硬背的教学格局,改变了传统的只注重传授知识而忽视能力培养的教学。

5、增强实验设计能力,培养学生的创新思维能力

复习中不断总结实验设计题,实验在高考中有非常重要的地位,复习时加强实验设计能力要求的专题研究,要求学会根据给出的条件,自己设计实验合理科学的步骤。如,给一定浓度的KNo3和洋葱等必要的材料器具请设计一个质壁分离自动复原的实验。要求在获得相应实验能力基础上来科学地设计实验步骤,以求得对实验原理、步骤、结果严密的结论。这样的专题复习,更具有开放性,给学生的思维留下了更大的空间,顺着题意发挥思维想象,进而得出相应的答案。

解题的基本能力是审题能力、思维能力和表达能力。在第一轮复习中,对审题能力的培养我们可以先定位在学会看清题目,解题时划划线、画画圈不失为一种提醒自己看清题目关键词的好办法,在看清题目的基础上,力求看懂、抓住关键词,找出特殊点。思维能力的培养我们可以定位在对问题的思考过程训练,对选择题我们既要回答被选答案的理由,更要回答不被选答案的理由,对简答题的答案我们要学会寻根问底,通过经常思考“为什么”、“怎么来的”等问题,加强我们思维的逻辑性。表达能力的培养我们可以定位在用词规范和表达的完整性上,在用文字描述或解释现象时,注意用规范的生物学语言按照思维的顺序,把内容完整地表达出来.

2022年数学幂函数知识点大全

2022年数学幂函数知识点大全有哪些你知道吗?学好数学的话要学生 总结 与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。一起来看看2022年数学幂函数知识点大全,欢迎查阅!

数学幂函数知识点总结

一、一次函数定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

1.y的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k为任意不为零的实数b取任何实数)

2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤

(1)列表;

(2)描点;

(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;

当b=0时,直线通过原点

当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:

已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②

(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

数学上册知识点幂函数

幂函数定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的.取值为非零有理数,有必要分成几种情况来讨论各自的特性:

首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;

排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;

排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。

总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:

如果a为任意实数,则函数的定义域为大于0的所有实数;

如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.

可以看到:

(1)所有的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)显然幂函数无界。

高中数学幂函数知识

1.函数的单调性(局部性质)

(1)增函数

设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.

注意:函数的单调性是函数的局部性质;

(2)图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3)函数单调区间与单调性的判定 方法

(A)定义法:

a.任取x1,x2∈D,且x1

b.作差f(x1)-f(x2);

c.变形(通常是因式分解和配方);

d.定号(即判断差f(x1)-f(x2)的正负);

e.下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

8.函数的奇偶性(整体性质)

(1)偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

a.首先确定函数的定义域,并判断其是否关于原点对称;

b.确定f(-x)与f(x)的关系;

c.作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数.

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定.

9、函数的解析表达式

(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)求函数的解析式的主要方法有:

1)凑配法

2)待定系数法

3)换元法

4)消参法

10.函数最大(小)值(定义见课本p36页)

a.利用二次函数的性质(配方法)求函数的最大(小)值

b.利用图象求函数的最大(小)值

c.利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);.

2022年数学幂函数知识点大全相关 文章 :

★ 2022年初一数学上册知识点归纳

★ 2022高三数学知识点

★ 2022高二数学重要知识点

★ 高三数学知识点下册2022

★ 人教版五年级数学上册知识点归纳2022

★ 2022高二数学知识点人教版

★ 2022七年级数学知识点

★ 高一幂函数知识点总结

★ 2021年数学幂函数知识点大全

★ 高中数学幂函数知识点

高二数学期末考考试反思与总结

高二数学期末考考试反思与总结一

 针对期末考试末出现的问题,做出了以下反思和以后在数学的学习末要运用的方法:

 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂末拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

 (4)经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

 (5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。

 (6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。

 (7)学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

 (8)经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

 (9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。

高二数学期末考考试反思与总结二

 年级组长把这次期末考试的所有数据都整理出来了,单看成绩,所教的两个班在同类的班级还算不错的,6班(体育班)的平均分是44.76,10班(理科班)的平均分是40.95.且10班的尖子分也较突出,在年级表彰的前20名末,10班包揽了前三名。尽管表面上的成绩是令人满意的,但细细分析学生的考卷,有几个方面不得不令我深思:

 一、优生到底是我教会还是学生自己学会的。因为我校数学科在进行《高末数学必做100题》的实验,本次的考卷的题目在考前把试卷类似的题型已经让学生先做了,并且还评讲了,有些题目甚至都已讲了好多遍,为什么仍有这么多的学生做不出来、考不好!这其末的原因是什么呢?反思平时的课堂,我经常是怕自己所讲的内容学生不明白,于是不停地讲,讲到学生好像是明白了。通过考试再一次证明,大部分学生是不明白的,就算课堂上点头表示明白的也仅是似懂非懂的。所以,这种认为自己讲了很多遍之后,学生就记住了、掌握了的想法是错误的。实践证明,只有让学生经历知识的形成过程,他才能有效地掌握所学的知识。从这次考试上也充分证明了这一点。

 二、严师不定有高徒,但不严的老师一定没有高徒。人都有懒惰的天性,特别是我们学校那个层次的学生,他们其末大部分都没有在学习末体会到快乐的,所以,他们都会想方设法去偷懒。如果教师要想大部分学生都掌握较好,还得在课堂上、作业上严格要求他们,并严防学生不做作业或假做作业。本次考试就是个例子,像考了1分,3分,7分,9分的学生就是典型的偷懒分子,他们根本就没有把之前布置的作业去落实,而这样的成绩出来后更加打击他们的信心,旦形成恶性循环,学生便会自暴自弃,而且师生关系恶化。所以,在今后的教学过程,对于这部分后进生除了倾注更多的爱心外,还要对他们更加严格。

 三、个人教学水平提高了,学生的水平也会提高的。虽然从教也有几年了,但对教材的研究还不够,没能够很好地联系学生的`生活实际,因而课堂上不能很好的调动学生的积极性。特别是对于差生的教育没有很好的办法提高他们学习数学的兴趣。同时,自己的教学思路不够开阔,常常会固守于教材,学生在学的时候也学的较死,不能举一反三。考卷上的简便计算就反映了这一点。通过这次考试,我要改革自己的教学方法,激发学生的学习兴趣,特别是思考一些好的办法去调动后进生的学习积极性,使之愿意学,乐意学,积极主动地学。.在个人专业素养方面也努力提高自己。平时多看一些有关教学方面的杂志,特别是与自己所教年级有关的。多听课,多向有经验的老师学习。

高二数学期末考考试反思与总结三

 高三数学复习不仅只是高一高二知识点的简单回顾与整理,更是已学知识点的归纳、总结与提高。期末考试后,考生复习应该仔细分析自己的试卷,找出失分的原因,总结失误的经验,使下一步的复习更加目标明确,这样才能在下次的考试末取得好成绩。

 黄华数学老师要提醒考生的是,期末考试后的复习末要注意:

 1.思想上要去掉依赖性,一些考生做题末习惯性地依赖老师的提示与点拨,孰不知考试末是不会有哪位老师肯指点与提示你的。

 2.学习末要主动分析与思考问题,遇到问题,多问几个为什么?

 3.考试后有强烈的纠错意识,找出错误的地方,总结出错误的原因,争取下次不要再犯同样的错误。

 一、学会找出错误

 一些考生在试卷发下来后,最关心的是分数,而不是努力地去找出错误的地方,这样的学生就是在平时的作业、练习等在做完之后从不检查,把做作业当成完成任务,应付了事,仅仅追求解题数量,而作业一旦批改后,或者自己做的练习核对答案后恍然大悟一下,错的地方不是不会做、不懂,而是不够仔细,没有检查,下次再做,然后再错。

 二、学会自主学习

 每个高三的同学,都应该学会自主学习,有目的有计划地复习,特别是自己要学会知识整理与归纳,对老师上课讲的内容、例题,对自己平时做的习题要进行分析,每个同学自己应该有自己的学习计划、复习计划,做到心末有底。一份试卷做完后,不但知道哪些会做,哪些不会做,而且还要知道哪些能得分,哪些会失分。

 三、学会分类解题

 高三学习过程末,效率问题非常关键。重点问题重点学习,难点问题认真钻研,对一个比较难的知识点,要努力通过各种途径,如钻研、查找资料、老师指导等多种形式,真正弄懂它,杜绝一知半解。

 函数、不等式、数列始终是高末数学的重点内容,解析几何、立体几何两大几何问题,通过几何特征考查学生分析问题、推理论证的能力,同时运算能力的考查也蕴涵其末。导数、向量的工具作用在高考末也得到充分的体现,三角、复数、排列组合、概率虽说难度不大,但可以考察知识掌握的熟练程度和数学的基本功。

 每一种题型的解题方法应有所不同,选择题要巧做,如特殊值法、排除法等;填空题要细做,因为填空题只有一个答案,没有过程分,方法正确,结果错误,是没有分数的;基础题要稳做,这是得分的关键,不能因为简单而一带而过,而把大量的时间化在难题上;高难题要敢做,近几年高考压轴题,得一半甚至一半以上的分数是很多同学可以做到的,能做好的同学却不多。

 四、学会解题后总结

 学好数学关键在于解题,但只解题不一定能学好数学。在训练时,首先提高正确率、然后注意解题速度,解题时不要满足于会做,更要注意解题后的反思,从末悟出解题策略,体会数学思想方法。

 近几年高考末都有一些创新题,平时要注意一些新颖问题的解题方法,找到与所学知识之间的相互联系,处理问题的方法的共同点,思考问题的突破口,使自己在遇到新问题时不会措手不及,能够从容面对。此外,心态有时比学习方法更重要,在数学复习末培养兴趣,保持进取状态。

我高二了,谁能提供给我一个学好数学的方法,是应该多做题吗?

数学是必考科目之一,故从初一开始就要认真地学习数学。那么,怎样才能学好数学呢?现介绍几种方法以供参考:

一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

*****************************************************************************************************

一、 高中数学课的设置

高中数学内容丰富,知识面广泛,将有:《代数》上、下册、《立体几何》和《平面解析几何》四本课本,高一年级学习完《代数》上册和《立体几何》两本书。高二将学习完《代数》下册和《平面解析几何》两本书。一般地,在高一、高二全部学习完高中的所有高中三年的知识内容,高三进行全面复习,高三将有数学“会考”和重要的“高考”。

二、初中数学与高中数学的差异。

1、知识差异。

初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0—1800”范围内的,但实际当中也有7200和“—300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》,将在三维空间中求一些几何实体的体积和表面积;还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,( =6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答: =3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=-1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

3、学生自学能力的差异

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

4、思维习惯上的差异

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

5、定量与变量的差异

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0 (a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

三、如何学好高中数学

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、 有良好的学习兴趣

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

2、 建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3、 有意识培养自己的各方面能力

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

四、其它注意事项

1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是 的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

五、学数学的几个建议。

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3、记忆数学规律和数学小结论。

4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。

5、争做数学课外题,加大自学力度。

6、反复巩固,消灭前学后忘。

7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

参考资料:

/3894500.html

*****************************************************************************************************

高中数学学习方法谈

进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于学生不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。在此结合高中数学教学内容的特点,谈一下高中数学学习方法,供同学参考。

一、 高中数学与初中数学特点的变化

1、数学语言在抽象程度上突变

初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及非常抽象的集合语言、逻辑运算语言、函数语言、图象语言等。

2、思维方法向理性层次跃迁

高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么等。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。

3、知识内容的整体数量剧增

高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。

4、知识的独立性大

初中知识的系统性是较严谨的,给我们学习带来了很大的方便。因为它便于记忆,又适合于知识的提取和使用。但高中的数学却不同了,它是由几块相对独立的知识拼合而成(如高一有集合,命题、不等式、函数的性质、指数和对数函数、指数和对数方程、三角比、三角函数、数列等),经常是一个知识点刚学得有点入门,马上又有新的知识出现。因此,注意它们内部的小系统和各系统之间的联系成了学习时必须花力气的着力点。

二、如何学好高中数学

1、养成良好的学习数学习惯。

建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

2、及时了解、掌握常用的数学思想和方法

学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。

解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。高中数学中经常用到的数学思维策略有:以简驭繁、数形结合、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅等。

3、逐步形成 “以我为主”的学习模式

数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神;正确对待学习中的困难和挫折,败不馁,胜不骄,养成积极进取,不屈不挠,耐挫折的优良心理品质;在学习过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,注重新旧知识间的内在联系,不满足于现成的思路和结论,经常进行一题多解,一题多变,从多侧面、多角度思考问题,挖掘问题的实质。学习数学一定要讲究“活”,只看书不做题不行,只埋头做题不总结积累也不行。对课本知识既要能钻进去,又要能跳出来,结合自身特点,寻找最佳学习方法。

4、针对自己的学习情况,采取一些具体的措施

记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中

拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再

犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化

或半自动化的熟练程度。

经常对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,

使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。

阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课

外题,加大自学力度,拓展自己的知识面。

及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩

固,消灭前学后忘。

学会从多角度、多层次地进行总结归类。如:①从数学思想分类②从解

题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。

经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学

思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。

无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而

不是一味地去追求速度或技巧,这是学好数学的重要问题。

对新初三学生来说,学好数学,首先要抱着浓厚的兴趣去学习数学,积极展开思维的翅膀,主动地参与教育全过程,充分发挥自己的主观能动性,愉快有效地学数学。

其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

在新学期要上好每一节课,数学课有知识的发生和形成的概念课,有解题思路探索和规律总结的习题课,有数学思想方法提炼和联系实际的复习课。要上好这些课来学会数学知识,掌握学习数学的方法。

概念课

要重视教学过程,要积极体验知识产生、发展的过程,要把知识的来龙去脉搞清楚,认识知识发生的过程,理解公式、定理、法则的推导过程,改变死记硬背的方法,这样我们就能从知识形成、发展过程当中,理解到学会它的乐趣;在解决问题的过程中,体会到成功的喜悦。

习题课

要掌握“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”的诀窍。除了听老师讲,看老师做以外,要自己多做习题,而且要把自己的体会主动、大胆地讲给大家听,遇到问题要和同学、老师辩一辩,坚持真理,改正错误。在听课时要注意老师展示的解题思维过程,要多思考、多探究、多尝试,发现创造性的证法及解法,学会“小题大做”和“大题小做”的解题方法,即对选择题、填空题一类的客观题要认真对待绝不粗心大意,就像对待大题目一样,做到下笔如有神;对综合题这样的大题目不妨把“大”拆“小”,以“退”为“进”,也就是把一个比较复杂的问题,拆成或退为最简单、最原始的问题,把这些小题、简单问题想通、想透,找出规律,然后再来一个飞跃,进一步升华,就能凑成一个大题,即退中求进了。如果有了这种分解、综合的能力,加上有扎实的基本功还有什么题目难得倒我们。

复习课

在数学学习过程中,要有一个清醒的复习意识,逐渐养成良好的复习习惯,从而逐步学会学习。数学复习应是一个反思性学习过程。要反思对所学习的知识、技能有没有达到课程所要求的程度;要反思学习中涉及到了哪些数学思想方法,这些数学思想方法是如何运用的,运用过程中有什么特点;要反思基本问题(包括基本图形、图像等),典型问题有没有真正弄懂弄通了,平时碰到的问题中有哪些问题可归结为这些基本问题;要反思自己的错误,找出产生错误的原因,订出改正的措施。在新学期大家准备一本数学学习“病例卡”,把平时犯的错误记下来,找出“病因”开出“处方”,并且经常拿出来看看、想想错在哪里,为什么会错,怎么改正,通过你的努力,到中考时你的数学就没有什么“病例”了。并且数学复习应在数学知识的运用过程中进行,通过运用,达到深化理解、发展能力的目的,因此在新的一年要在教师的指导下做一定数量的数学习题,做到举一反三、熟练应用,避免以“练”代“复”的题海战术。

最后,要有意识地培养好自己个人的心理素质,全面系统地进行心理训练,要有决心、信心、恒心,更要有一颗平常心。

希望对你有帮助^^

如何总结人教版数学书72页第8题

高二下册数学(人教版)知识总结(本章小结)

......本章小结知识总结1.知识网络2.方法总结(1)运用计数原理解决实际问题人教版初二数学下册,人教版初三数学下册要分清楚是分类考虑还是分步考虑.分类与分步的特征是彼此独立与相互依赖.(2)有限 ...

高考前数学知识点总结[整理]-人教版

......6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。7. 对映射的概念了解吗?映 ...高考数学知识点总结,高考物理知识点总结......6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。7. 对映射的概念了解吗?映 ...

2006年四川省叙永一中高2006级数学阶段检测题(理科一轮复习总结卷)-人教版[整理]

......3.已知向量且与平行四川省叙永县,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,四川省叙永煤矿; ...

2007年高考高三数学复习解题方法大总结.rar-新人教-旧人教[全套]

...... 学------不等式复习续教学内容整式不等式、分式不等式、指数、对数不等式及含参数的不等式的解法。教学目标1、整式不等式的解法是建立在二次不等式 ...高三复习计划,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,高三复习...... 学------不等式复习续教学内容整式不等式、分式不等式、指数、对数不等式及含参数的不等式的解法。教学目标1、整式不等式的解法是建立在二次不等式 ...

高一数学必修3公式总结以及例题-新人教[特约]

......一数学必修3公式总结以及例题§1 算法初步( 秦九韶算法:通过一次式的反复计算逐步得出高次多项式的值高一数学必修1例题,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,对于一个n次多项式,高一物理必修1例题只要作n次乘法和n次加法即可。表达式 ...

高考前数学知识总结-新人教[整理]

......6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。7. 对映射的概念了解吗?映 ...新人工作总结,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,对于一个n次多项式,高考总结......6. 命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。)原命题与逆否命题同真、同假;逆命题与否命题同真同假。7. 对映射的概念了解吗?映 ...

2006年高考数学应用题总结及反思-人教版[整理]

......06年高考数学应用题总结及反思应用题能考察学生对数学知识的灵活转化和实际应用的能力人教版三年级应用题,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,对于一个n次多项式,能全面体现学生的数学综合素质,所以很受试卷命题人的青睐,分数应用题教学反思并成为每年高考 ...

9高二下册数学(人教版)本章总结(第十章)

......本章总结一、本章学习的主要内容有排列、组合、二项式定理.二、分类计数原理与分步计数原理是关于计数的两个基本原理.不仅是推导排列数公式和组合数公式的基础人教版初二数学下册,则等于( )A.-6 B.6 C.4 D. -44.给出下列关于互不相同的直线m、l、n和平面α、β的四个命题:①若;②若m、l是异面直线,对于一个n次多项式,能全面体现学生的数学综合素质,所以很受试卷命题人的青睐,人教版初三数学下册 ...

详见:/schooledu/blog/item/468c3e089873c8c163d986f4.html

高中数学教案简案(精选5篇)

 教师们通常需要教案来辅助教学,那么教案应该怎么写呢?下面是由我为大家整理的“高中数学教案简案(精选5篇)”,仅供参考,欢迎大家阅读。

篇一:高中数学教案简案精选

教学目标:

 1、结合实际问题情景,理解分层抽样的必要性和重要性;

 2、学会用分层抽样的方法从总体中抽取样本;

 3、并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

  教学重点:

 通过实例理解分层抽样的方法。

  教学难点:

 分层抽样的步骤。

  教学过程:

 一、问题情境

 1、复习简单随机抽样、系统抽样的概念、特征以及适用范围。

 2、实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

 二、学生活动

 能否用简单随机抽样或系统抽样进行抽样,为什么?

 指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

 由于样本的容量与总体的个体数的比为100∶2500=1∶25,

 所以在各年级抽取的个体数依次是。即40,32,28。

 三、建构数学

 1、分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

 说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

 ②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

 2、三种抽样方法对照表:

 类别

 共同点

 各自特点

 相互联系

 适用范围

 简单随机抽样

 抽样过程中每个个体被抽取的概率是相同的

 从总体中逐个抽取

 总体中的个体数较少

 系统抽样

 将总体均分成几个部分,按事先确定的规则在各部分抽取

 在第一部分抽样时采用简单随机抽样

 总体中的个体数较多

 分层抽样

 将总体分成几层,分层进行抽取

 各层抽样时采用简单随机抽样或系统

 总体由差异明显的几部分组成

 3、分层抽样的步骤:

 (1)分层:将总体按某种特征分成若干部分。

 (2)确定比例:计算各层的个体数与总体的个体数的比。

 (3)确定各层应抽取的样本容量。

 (4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

 四、数学运用

 1、例题。

 例1(1)分层抽样中,在每一层进行抽样可用_________________。

 (2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

 ②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;

 ③某班元旦聚会,要产生两名“幸运者”。

 对这三件事,合适的抽样方法为

 A、分层抽样,分层抽样,简单随机抽样

 B、系统抽样,系统抽样,简单随机抽样

 C、分层抽样,简单随机抽样,简单随机抽样

 D、系统抽样,分层抽样,简单随机抽样

 例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

 很喜爱

 喜爱

 一般

 不喜爱

 电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

 解:抽取人数与总的比是60∶12000=1∶200,

 则各层抽取的人数依次是12.175,22.835,19.63,5.36,

 取近似值得各层人数分别是12,23,20,5。

 然后在各层用简单随机抽样方法抽取。

 答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

 数分别为12,23,20,5。

 说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。

 (3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。

 分析:(1)总体容量较小,用抽签法或随机数表法都很方便。

 (2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。

 (3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。

 五、要点归纳与方法小结

 本节课学习了以下内容:

 1、分层抽样的概念与特征;

 2、三种抽样方法相互之间的区别与联系。

篇二:高中数学教案简案精选

  一、指导思想与理论依据

 数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

  二、教材分析

三角函数的诱导公式是普通高中课程标准实验教科书 (人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时 , 教学内容为公式 (二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角 与 、 、 终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。为此本节内容在三角函数中占有非常重要的地位。

  三、学情分析

 本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

  四、教学目标

 (1)基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;

 (2)能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;

 (3)创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;

 (4)个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

  五、教学重点和难点

 1.教学重点

 理解并掌握诱导公式。

 2.教学难点

 正确运用诱导公式,求三角函数值,化简三角函数式。

  六、教法学法以及预期效果分析

 高中数学优秀教案高中数学教学设计与教学反思

 “授人以鱼不如授之以鱼”, 作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法, 如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析。

 1.教法

 数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质。

 在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”, 由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦。

 2.学法

 “现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题。

 在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题 简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习。

 3.预期效果

 本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题。

  七、教学流程设计

 (一)创设情景

 1.复习锐角300,450,600的三角函数值;

 2.复习任意角的三角函数定义;

 3.问题:由xx,你能否知道sin2100的值吗?引如新课。

 设计意图

 高中数学优秀教案 高中数学教学设计与教学反思。

 自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法。

 (二)新知探究

 1. 让学生发现300角的终边与2100角的终边之间有什么关系;

 2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;

 3.Sin2100与sin300之间有什么关系。

 设计意图:由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角 与 的三角函数值的关系做好铺垫。

 (三)问题一般化

 探究一

 1.探究发现任意角的终边与的终边关于原点对称;

 2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;

 3.探究发现任意角与的三角函数值的关系。

 设计意图:首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进。

 (四)练习

 利用诱导公式(二),口答三角函数值。

 喜悦之后让我们重新启航,接受新的挑战,引入新的问题。

 (五)问题变形

 由sin3000= -sin600 出发,用三角的定义引导学生求出 sin(-3000),Sin150 0值,让学生联想若已知sin3000= -sin600 ,能否求出sin(-3000),Sin150 0)的值。

篇三:高中数学教案简案精选

一、基础突破课本层面

 其实很多同学在平时学习中也重视课本,概念公式也记住了但是任然感觉学习没有多大效果,还不如多做两道题目有意义,可是做题有无从思考,于是陷入了一个死循环。那么课本该怎么学呢?

 ①概念公式的拓展以及知识点之间的联系

 核心是概念的外延和概念之间的联系,大家知道一般概念定理基本可以分成四块:文字+图形+式子+运算,而一般的题目也是由这四块文字+图形+式子+运算构成的,这就是解题与课本学习之间的对应的地方,所以概念学习就要从这四个方面入手挖掘突破,对于相关的学习挖掘方法我们给大家通过函数单调性做了一个简单示范,可参见樊瑞军相关视频讲解。

 ②课本题型归纳

 大家知道高中数学的课本题目根据难易程度有A,B两组,这些题目都是经过专家组慎重选择的,并不是胡乱选择的,而且高考试题的编制基本是通过课本深度改编的,所以我们在学习过程中首先要进行题型方面的归纳梳理,掌握这些题目的深层含义,并在后续的练习中不断深化和补充题型,那么所谓的基础题型基本就没有问题了。这就是课本学习中的第二个突破口基础题型掌握,对于题型的梳理方法我们通过必修二直线与圆这部分给大家做了详细示范,详细可参见视频讲解。

 ③运算提升

 运算是高中数学解题必须的一个过程,而且会直接关系到考试成绩的好坏,但是运算基本不会在课本直接呈现,而是要通过解题不断归纳总结梳理,樊瑞军认为高中数学运算主要分四块:

 1、高中数学基本式子变形处理如整式类,分式类,根式类等;

 2、初高中各类方程及方程组突破;

 3、各类简单,复杂及含参不等式突破;

 4、特殊类式子处理。

 ④图形突破

 图形特别是函数图形不仅在高考的选择题中直接考察更是解答题中必备的,但高考的考察一般都要高于课本,这就需要在课本学习的基础上进行拓展,图形突破主要包括画图,认识图形,图形拓展方法,图形处理及图形计算五个方面。

 考试层面

 一般的考试试卷和高考真题都是我们学习最好的积累归纳素材,考试试卷不仅能帮助我们把握学习方向,更能够检查学习效果。

  二、把握做题方向重视归纳解题思考方法

 高中数学的题目数量非常庞大,要想单纯通过做题突破高考,对于绝大多数考生来说确实难以实现,随着高考的改革,高考已把考查的'重点放在创造型、能力型的考查上,因此要精做习题,学会选择,有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,在遇到即将来临的期中期末考试和未来的高考中哪些内容是高频命题点,哪些是冷门的,有哪些基本题型,一本书学完了哪些还没有掌握好都要有一个大致标记,以便于后续继续学习归纳。当你做完一道习题后可以思考:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?

 高中数学的题目数量非常庞大,要想单纯通过做题突破高考,对于绝大多数考生来说确实难以实现,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上,因此要精做习题,学会选择,有助于判断高考题目与平时常见题目的异同,增强判断题目信度的能力,在遇到即将来临的期中期末考试和未来的高考中哪些内容是高频命题点,哪些是冷门的,有哪些基本题型,一本书学完了哪些还没有掌握好都要有一个大致标记,以便于后续继续学习归纳。当你做完一道习题后可以思考:本题考查了什么知识点?什么方法?我们从中得到了解题的什么方法?这一类习题中有什么解题的通性?

三、时刻面向高考以高考为核心

 不论我们是高一还是高二甚至是高三,高考都是我们最后的冲刺的目标,所以我们在平时的学习过程中要始终面向高考,经常做高考题目,因为高考真题在考查知识点时的切入点,综合程度以及题型与平时的练习题还是有一道差异,而且能帮助我们正确地的掌握高考知识点的难度和基本题型。我们平时的复习资料中,有相当的习题已超出高考难度或者与高考方向偏离较大,针对这些题目我们可以舍弃,而集中精力突破真正我们该突破的内容。

  四、注重解题思路

 学习数学核心在于如何思考,重视老师对该题目的分析和归纳,然而有很多同学往往忽视问题的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。听课虽然认真,但费力,听完后满脑子的计算过程,支离破碎。所以当教师解答习题时,学生要重视问题的思考分析。另外,当题目的答案给出时,并不代表问题的解答完毕,还要花一定的时间认真总结、归纳理解。要把这些解题策略全部纳入自己的脑海成为永久地记忆,变为自己解决这一类型问题的经验和技能。同时也解决了学生中会听课而不会做题目的坏毛病。

  五、积累考试经验

 对于每一次考试和单元模拟要积累一定的考试经验,掌握一定的考试技巧,在每一次考试中要锻炼自己的承受能力、接受能力、解决问题以及应对一些突发情况等综合能力。只有在平时的考试中不断总结,那么在高考的考场上就会得心应手,避免考试发挥失常等的发生。

  六、归纳小题及解答题方法

 高中数学考试中的选择题、填空题是基础,共76分是整个考试得分的基础,在平时学习过程中不但要在会接的基础上提高解题速度,还要归纳总结选择题的热门题型,解题技巧等。

 选择题方法技巧主要通过选项布局特征,选择题快速运算技巧,选择题题目特征与核心解法,选择题中的结论这四个方面进行归纳突破。

 对于解答题而言高考的题型以及命题方式等都是非常成熟的,要在平时学习中对于解答题中的一般思考方法,热门题型,基础知识点,体现的基本运算,涵盖的基本图形以及书写要点要求等六个方面进行归纳,对于解题思考,运算,图形等相关方面我们在前面都做了一些分析,我们在后面将继续给大家总结归纳,相关可关注樊瑞军微信公众号或者个人微信号,数学学科是能在短时间内提高成绩的一门学科,数学是高考中三科综合科之中一门拉开综合成绩的重要学科,学数学要重视方法,不能盲目随波逐流。

  七、制定好学习计划和复习策略

 学好数学要制定好计划,不但要有高中三年的计划,也要有本学期大的规划,还要有每月、每周、每天的小计划,计划要与老师的复习计划吻合,不能相互冲突,不要急于求成每一天甚至一星期全面突破一个考点,研究该知识点考查的不同侧面、不同角度以及高考的难度,不断地归纳、反思、回顾,集中精力提前突破高考中的常考点和重难点。

 预习

 如果你想把数学学好,单纯地做学校发的资料是远远不够的。去学校旁边买一本侧重讲解的参考书。在老师讲课之前,先把课本中要学习的内容看一遍(用心看),定义、公式可能记不住对吗?对,看着写着,一遍不行再来一遍,把这些基础弄清楚为止。之后看你买的参考书,这比课本上所讲解的又深了一个层次,每讲解一个知识点,都会有一两个例题。看完后,把课本、参考书上面的知识点再回顾一遍,做课本后面的习题。

 听课

 你的预习基本可以让你明白90%了,至于课堂,有的放矢吧。你的选择有很多,如果你的知识点掌握的已经很好,你可以再进行回顾,也可以自己找题做;如果你的知识点掌握的不是太好,你可以跟着老师再把知识点记忆一下。当老师拓展新的知识点时要认真听,再听一下,加深理解。

 复习

 对于各科而言,复习都很重要。拿数学来说,好多同学认为就是不断的刷题。其实不然,当你要做课后习题的时候,首先应先温习教材知识点,之后看你的课本后面是否有做错的题目,如果有,再做一遍,最后就是找题做了。

篇四:高中数学教案简案精选

教学目标

 1.明确等差数列的定义。

 2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题。

 3.培养学生观察、归纳能力。

  教学重点

 1. 等差数列的概念;

 2. 等差数列的通项公式;

  教学难点

 等差数列“等差”特点的理解、把握和应用;

教具准备

 投影片1张;

教学过程

 (I)复习回顾

 师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

 (Ⅱ)讲授新课

 师:看这些数列有什么共同的特点?

 1,2,3,4,5,6; ①

 10,8,6,4,2,…; ②

 生:积极思考,找上述数列共同特点。

 对于数列①(1≤n≤6);(2≤n≤6)

 对于数列②-2n(n≥1)(n≥2)

 对于数列③(n≥1)(n≥2)

 共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

 师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

 一、定义:

 等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

 如:上述3个数列都是等差数列,它们的公差依次是1,-2,。

 二、等差数列的通项公式

 师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

 若将这n-1个等式相加,则可得:

 即:即:即:……

 由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

 如数列①(1≤n≤6)

 数列②:(n≥1)

 数列③:(n≥1)

 由上述关系还可得:即:则:=如:三、例题讲解

 例1:(1)求等差数列8,5,2…的第20项

 (2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

 解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

 (Ⅲ)课堂练习

 生:(口答)课本P118练习3

 (书面练习)课本P117练习1

 师:组织学生自评练习(同桌讨论)

 (Ⅳ)课时小结

 师:本节主要内容为:①等差数列定义。

 即(n≥2)

 ②等差数列通项公式 (n≥1)

 推导出公式:

 (V)课后作业

 一、课本P118习题3.2 1,2

 二、1.预习内容:课本P116例2P117例4

 2.预习提纲:

 ①如何应用等差数列的定义及通项公式解决一些相关问题?

 ②等差数列有哪些性质?

篇五:高中数学教案简案精选

 一、教学目标

 知识与技能

 在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。

 过程与方法

 通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

 情感态度与价值观

 渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

  二、教学重难点

 重点

 掌握圆的一般方程,以及用待定系数法求圆的一般方程。

 难点

 二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程

 (一)复习旧知,引出课题

 1、复习圆的标准方程,圆心、半径。

 2、提问1:已知圆心为(1,—2)、半径为2的圆的方程是什么?

高中数学有哪些比较好的教辅?

高中数学基础知识复习看什么教辅书?推荐《一线调研高考数学一轮复习》

它详细罗列了高考数学的考点和考向,并通过讲解和训练,让我们更好地掌握高中三年的核心知识点和易错点。做到一课一练,熟记基础知识公式概念,形成题型与方法的关联记忆。真题练习册与测试卷,帮助你熟悉高考命题范围。最重要的是,经典题目“一拖三”训练,帮助你总结同一类型题目的出题原理和解题思路,做到游刃有余。

高中数学掌握解题技法看什么教辅?推荐《一线调研数学解题技法》

首先,该书通过系统的整理,将所有涉及的数学知识都进行了一一对应的题型解答和解题方法的梳理,让学生在遇到相应题型时能够快速找到正确的解题路径;其次,书中的真题讲解、解题方法和解题关键点相互印证,让学生更好地理解解题思路,同时避免了在解题过程中出现错误;最后,通过针对训练的设计,让学生在巩固所学知识的同时,进一步提升他们的解题技巧和数学思维能力。

高三学习分秒必争,没时间总结知识点和解题技巧,弄不懂公式、定理,缺乏真题、押题训练,可以考虑在暑期选择适合自己的教辅书,为开学后的总复习做好准备吧!

今天关于“高二数学知识点总结(最全版)高三网”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

【版权声明】

本页面文章高二数学知识点总结(最全版)高三网内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。