射影定理的解释 射影定理三个结论

射影定理的解释 关于三角形的 任意 一边等于其他两边在这边上射影的和的定理。即a=bcosc+ccosb,b=acosc+ccosa,c=acosb+bcosa...接下来由新高三网小编为你整理了射影定理公式相关详细内容,我们一起来分享吧。
射影定理的解释 射影定理三个结论

射影定理的解释

射影定理的解释

关于三角形的 任意 一边等于其他两边在这边上射影的和的定理。即a=bcosc+ccosb,b=acosc+ccosa,c=acosb+bcosa。

词语分解

射影的解释 ∶从一点向一条直线或一个平面作垂线,垂足就是这个点的射影。一条线段上的各点的射影的连线就是这条线段的射影 ∶古书上指;蜮;,因为 据说 ;蜮;这种 动物 能含沙喷射人影使人致病。;射影; 也是 ;蜮;的 别名 详细 定理的解释 通过理论证明能用来作为 原则 或 规律 的命题或公式详细解释.确定的法则或 道理 。《韩非子·解老》:“凡理者, 方圆 、短长、麤靡、坚脆之分也。故理定而后可得道也。故定理有存亡,有死生,有盛衰。夫物 之一 存一亡,乍

射影定理是怎样的

射影定理(又叫欧几里德(Euclid)定理)

直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC, (2)(AB)^2;=BD·BC , (3)(AC)^2;=CD·BC 。 等积式 (4)ABXAC=BCXAD(可用面积来证明)

射影定理三个结论

射影定理三个结论如下:

直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC, (AB)^2;=BD·BC , (3)(AC)^2;=CD·BC 。 等积式 (4)ABXAC=BCXAD(可用面积来证明)

面积射影定理:“平面图形射影面积等于被射影图形的面积S乘以该图形所在平面与射影面所夹角的余弦。”COSθ=S射影/S原(平面多边形及其射影的面积分别是S原,S射影,它们所在平面所成锐二面角的为θ)

证明思路:因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。

高中数学射影定理公式

高中数学射影定理公式:CD?=AD·DB;BC?=BD·BA;AC?=AD·AB;AC·BC=AB·CD

资料拓展:

直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式表达为:在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD?=AD·DB;②BC?=BD·BA;③AC?=AD·AB;④AC·BC=AB·CD(等积式,可用面积来证明)

所谓射影,就是正投影。直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。

那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线)。

那么三角形的斜边和另一直角边的比值就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算即可。

欧几里得(希腊文:Ευκλειδη? ,公元前325年—公元前265年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-公元前283年)时期的亚历山大里亚。

他最著名的著作《几何原本》是欧洲数学的基础,总结了平面几何五大公设,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。

射影定理 的内容

直角三角形射影定理  </B>直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式 如图,Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射影定理如下:

(1)(BD)^2;=AD·DC,

(2)(AB)^2;=AD·AC ,

(3)(BC)^2;=CD·AC 。

证明:在 △BAD与△BCD中,∠A+∠C=90°,∠DBC+∠C=90°,∴∠A=∠DBC,又∵∠BDA=∠BDC=90°,∴△BAD∽△CBD相似,∴ AD/BD=BD/CD,即(BD)?=AD·DC。其余类似可证。(也可以用勾股定理证明)

注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得:

(AB)^2;+(BC)^2;=AD·AC+CD·AC =(AD+CD)·AC=(AC)^2;,

即 (AB)^2;+(BC)^2;=(AC)^2;。

这就是勾股定理的结论。 [编辑本段]任意三角形射影定理  </B>任意三角形射影定理又称“第一余弦定理”:

设⊿ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有

a=b·cosC+c·cosB,

b=c·cosA+a·cosC,

c=a·cosB+b·cosA。

注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。

证明1:设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且

BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB. 同理可证其余。

证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA

=acosB+(asinB/sinA)cosA=a·cosB+b·cosA. 同理可证其它的。

高二数学?射影定理

先说说射影的定义。

射影:就是正投影,从一点到一条直线所作垂线的垂足,叫做这点在这条直线上的正投影。一条线段的两个端点在一条直线上的正投影之间的线段,叫做这条线段在这直线上的正投影。

一、直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。

公式

如图,对于Rt△ABC,∠BAC=90度,AD是斜边BC上的高,则有射影定理如下:

1.(AD)^2=BD·DC,

2.(AB)^2=BD·BC,

3.(AC)^2=CD·BC

这主要是由相似三角形来推出的,例如(AD)^2=BD·DC:

由图可得

△BAD与△ACD相似,

所以

AD/BD=CD/AD,

所以(AD)^2=BD·DC。

注:由上述射影定理还可以证明勾股定理。由公式(2)+(3)得

(AB)^2+(AC)^2=(BC)^2,这就是勾股定理的结论。

二、任意三角形射影定理(又称“第一余弦定理”):

设三角形ABC的三边是abc,它们所对的角分别是ABC,则有

a=b*cosC+c*cosB

b=c*cosA+a*cosC

c=b*cosA+a*cosB

好了,今天关于“射影定理公式”的话题就讲到这里了。希望大家能够对“射影定理公式”有更深入的认识,并从我的回答中得到一些启示。如果您有任何问题或需要进一步的信息,请随时告诉我。

【版权声明】

本页面文章射影定理公式内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。