值域怎么求要过程
求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等。
配方法:将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。
常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。
逆求法:对于y=某x的形式可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的形式求解。
单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。
基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。
数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。
求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。
判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。
值域怎么求?
求函数的值域首先必须明确两点:一点是值域的概念,即对于定义域A上的函数y=f(x)其值域就是指集合C={y|y=f(x),x∈A},另一点是函数的定义域、对应法则是确定函数的依据。
求值域常用方法:
1、配方法,将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
2、常数分离法,这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
3、逆求法,对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
4、换元法,对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
5、单调性法,可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
6、基本不等式法,根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
7、数形结合法,可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
8、求导法,求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可的到值域了。
9、判别式法,将原函数变形成关于x的一元二次方程,该方程一定有解,利用方程有解的条件求得y的取值范围,即为原函数的值域。
扩展资料:
f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
求值域的方法
求值域的方法有观察法、配方法、反函数法、判别式法、换元法、图像法、均值不等式法、构造函数法、导数法。
1、观察法:通过观察函数的定义域和形式,直接得出函数的值域。这种方法适用于一些简单函数,如一次函数、二次函数等。
2、配方法:对于一些二次函数或可化为二次函数的函数,可以通过配方的方法,将函数化为顶点式或两根式,从而得出函数的值域。
3、反函数法:对于一些函数,可以通过求反函数,再由反函数的定义域来确定原函数的值域。
4、判别式法:对于一些含有未知数的分式或二次函数,可以通过求解判别式来确定函数的值域。
5、换元法:通过引入新的变量或参数,将函数化为新的函数,从而简化函数的求解过程。
6、图像法:对于一些可以通过图像表示的函数,可以通过观察图像来确定函数的值域。
7、均值不等式法:利用均值不等式求出函数的最值,从而得出函数的值域。
8、构造函数法:通过构造函数,利用函数的性质和不等式,求出函数的值域。
9、导数法:对于一些可导函数,可以通过求导数来确定函数的最值,从而得出函数的值域。
求域值常见的题型:
1、代数式的取值范围:这类题目通常给定一个代数式,要求求解其中某个或多个变量的取值范围。例如,求解不等式、方程或函数的最值等。
2、三角函数的取值范围:三角函数是数学中的重要内容之一,它们具有很多特殊的性质和公式。这类题目通常要求求解三角函数中角度的取值范围,或者根据已知条件求解三角函数的值域等。
3、指数函数的取值范围:指数函数是一种特殊的函数形式,它具有增长速度快、变化幅度大的特点。这类题目通常要求求解指数函数的单调性、最值或取值范围等。
4、多项式的取值范围:多项式是由多个单项式组成的数学表达式,它们在数学中有着广泛的应用。这类题目通常要求求解多项式的根、极值或取值范围等。
5、微分方程的取值范围:微分方程是一种描述物体运动或变化规律的数学模型。这类题目通常要求求解微分方程的解、稳定性或取值范围等。
值域的求解方法
1、图像法
根据函数图象,观察最高点和最低点的纵坐标。
2、配方法
利用二次函数的配方法求值域,需注意自变量的取值范围。
3、单调性法
利用二次函数的顶点式或对称轴,再根据单调性来求值域。
4、反函数法
若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。
扩展资料
函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
如何求函数的值域 有哪些方法
函数的值域可以通过观察法、配方法、常数分离法、换元法、逆求法、基本不等式法、求导法、数形结合法和判别式法等方法来求。
如何求函数的值域
一、配方法
将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
二、常数分离
这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
三、逆求法
对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
四、换元法
对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
五、单调性
可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
六、基本不等式
根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
七、数形结合
可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
八、求导法
求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。
函数的值域是什么函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:
y=kx+b (k≠0)的值域为R
y=k/x 的值域为(-∞,0)∪(0,+∞)
y=√x的值域为x≥0
y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;
当a<0时,值域为(-∞,4ac-b^2/4a]
y=a^x 的值域为 (0,+∞)
y=lgx的值域为R
求函数值域的方法!
在函数的三要素中,对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用.本文就函数值域求法归纳如下.
1,直接观察法
对于一些比较简单的函数,其值域可通过观察得到.
例1 求函数y=3-的值域.
解: 0 - 0 3- 3
故函数的值域是:[-∞,3]
2,配方法
配方法是求二次函数值域最基本的方法之一.
例2,求函数y=-2x+5,x[-1,2]的值域.
解:将函数配方得:y=(x-1)+4,x[-1,2],由二次函数的性质可知:
当x=1时,y =4
当x=-1,时=8
故函数的值域是:[4,8]
3,判别式法
例3 求函数y=的值域.
解:原函数化为关x的一元二次方程(y-1)-x+(y-1)=0
(1)当y≠1时,xR,△=(-1)-4(y-1)(y-1) 0
解得:y
(2)当y=1,时,x=0,而1[,]
故函数的值域为[,]
例4求函数y=x+的值域.
解:两边平方整理得:2-2(y+1)x+y=0(1)
xR,△=4(y+1)-8y0
解得:1-y1+
但此时的函数的定义域由x(2-x)0,得:0x2.
由△0,仅保证关于x的方程:2-2(y+1)x+y=0在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△0求出的范围可能比y的实际范围大,故不能确定此函数的值域为[,].可以采取如下方法进一步确定原函数的值域.
0x2,y=x+0,
=0,y=1+代入方程(1),解得:=[0,2],即当=时,原函数的值域为:[0,1+].
注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除.
4,反函数法
直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域.
例5 求函数y=值域.
解:由原函数式可得:x=
则其反函数为:y=
其定义域为:x≠
故所求函数的值域为:(-∞,)
5,函数有界性法
直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域.
例6 求函数y=的值域.
解:由原函数式可得:=
>0,>0
解得:-1 7,换元法
通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型.换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用.
例9 求函数y=x+的值域.
解:令x-1=t,(t0)则x=+1
∵y=+t+1=+,又t0,由二次函数的性质可知
当t=0时,y=1,当t→0时,y→+∞.
故函数的值域为[1,+∞)
8 数形结合法
其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.
例10 求函数y=+的值域.
解:原函数可化简得:y=∣x-2∣+∣x+8∣
上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和.
由上图可知:当点P在线段AB上时,
y=∣x-2∣+∣x+8∣=∣AB∣=10
当点P在线段AB的延长线或反向延长线上时,
y=∣x-2∣+∣x+8∣>∣AB∣=10
故所求函数的值域为:[10,+∞]
例11 求函数y=+ 的值域
解:原函数可变形为:y=+
上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,
由图可知当点P为线段与x轴的交点时, y=∣AB∣==,
故所求函数的值域为[,+∞].
例12 求函数y=-的值域
解:将函数变形为:y=-
上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差.即:y=∣AP∣-∣BP∣
由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P ,则构成△ABP ,根据三角形两边之差小于第三边,
有 ∣∣AP ∣-∣BP ∣∣<∣AB∣==
即:-(2)当点P恰好为直线AB与x轴的交点时, 有 ∣∣AP∣-∣BP∣∣=∣AB∣= .
综上所述,可知函数的值域为:(-,-). 注:由例11,例12可知,求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧.
如:例17的A,B两点坐标分别为:(3,2),(-2,-1),在x轴的同侧;
例18的A,B两点坐标分别为:(3,2),(2,-1),在x轴的同侧.
总之,在具体求某个函数的值域时,首先要仔细,认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法然后才考虑用其他各种特殊方法.
函数值域的求法
函数值域的求法可以通过观察法、配方法、常数分离法、换元法、逆求法、基本不等式法、求导法、数形结合法和判别式法等方法来求。
一、配方法:将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
二、常数分离:这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
三、逆求法:对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
四、换元法:对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
五、单调性:可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
六、基本不等式:根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
七、数形结合:可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
八、求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。
今天关于“求值域的方法”的探讨就到这里了。希望大家能够更深入地了解“求值域的方法”,并从我的答案中找到一些灵感。
本页面文章求值域的方法内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。