天元术的主要贡献者一直是人们关注的焦点,而它的今日更新更是备受瞩目。今天,我将与大家分享关于天元术的主要贡献者的最新动态,希望能为大家提供一些有用的信息。
天元术的主要贡献者 金元时期著数学家李治(首次提出天元术)
所谓天元素就是我们现在常见的一元二次方程,现在基本上读过初中的人都能轻松将此方程解答出来,但是如果是在古代这样的算式是很难解答出来的,而这个时候就出现一个伟大的数学家李治,同时也是天元术的主要贡献者,解出了这个让人头疼的方程式。
天元术的演变过程早在唐朝的时候就已经出现了天元术,并且数学家王孝通创造了一种?带从开立方?的解答方法,到了北宋的时候又出现了一位叫做贾宪的数学家创造了?增乘开方法?并且提出了?开方作法本原图?,再后来秦九韶极力推广?增乘开方法?成为了任意高次方程的求正根方法。
后来数学家李治花了十几年的时间写了一本《测圆海镜》的书,其中列举了很多种天元术的解决方法,但是《测圆海镜》写的过于高深和专业很多人都难以看明白,所以李治又写了一本比较浅显的《益古演段》,把常见的天元术从简到难依次编写出来。
一直到现在李治所编写的《测圆海镜》和《益古演段》两本书都是有关天元术的计算方法保存下来最原始并且最完整的著作,这个时候还只停留在只有一个未知数的时期,后来开始出现四个未知数的高次方程组,这个时候朱世杰编写出了《四元玉鉴》,解决了如何去除高次方程组的未知数问题。
这个时候天元术已经基本形成了,后来清代藏书家鲍延廷印的《知不足斋丛书》中收集了后人学习天元术的基本内容,并且数学家焦循和李锐共同编写了《天元一释》和《开方通释》,后来这两本书非常清晰明了的介绍了天元术。
后来天元素和现代方程论终于融合成了一体,也就是我们现在演算多次元方程的根本来源,天元素的形成对于整个世界的数学发展都具有非常深刻的意义看,据西方历史介绍,他们的多次元算法的演算比我们晚了三百多年。
天元术的发展做出重要贡献的是近代数学家是谁
对天元术贡献最大的数学家当属金元人李冶和朱世杰。
“天元术”即未知数的求解方法,追溯可至北宋时期数学家蒋周的论著《益古集》中,但对这一数术“天元术”的作出重要贡献的人史学家认为是北宋时期的李治。他在十二、十三世纪,提出了早期、完整的一元方程系统解题方法,在《测圆海镜》和《益古演段》中都对这一思想进行了论证阐述。
此外,朱世杰的《算学启蒙》也对这一“天元术”进行了系统介绍,也是这一方法论的重要贡献者之一。他二人可利用“天元术”建立二次方程解决数学问题,是宋元四大数学家之二。
天元术的主要影响
天元术的出现,提供了列方程的统一方法,其步骤要比阿拉伯数学家的代数学进步得多。而在欧洲,只是到了十六世纪才做到这一点。
此外,宋代创立的增乘开方法又简化了求解数学高次方程正根的运算过程。因此,在这一时期,列方程和解方程都有了简单明确的方法和程式,中国古典代数学发展到了比较完备的阶段。
不仅如此,继天元术之后,数学家又很快把这种方法推广到多元高次方程组,如李德载《两仪群英集臻》有天、地二元,刘大鉴《乾坤括囊》有天、地、人三元等,最后又由朱世杰创立了四元术。
对我国古代数学成就天元术的发展作出重要贡献的是
对我国古代数学成就天元术的发展作出重要贡献的是李治。
天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致,在古代数学中,列方程和解方程是相互联系的两个重要问题。
李冶在数学上的主要贡献是天元术(设未知数并列方程的方法),用以研究直角三角形内切圆和旁切圆的性质。与杨辉、秦九韶、朱世杰并称为“宋元数学四大家”。
扩展资料:
谓天元术,就是一种用数学符号列方程的方法,“立天元一为某某”相当于今“设x为某某”是一致的。在中国,列方程的思想可追溯到汉代的《九章算术》,书中用文字叙述的方法建立了二次方程,但没有明确的未知数概念。
到唐代,王孝通已经能列出三次方程,但仍是用文字叙述的,而且尚未掌握列方程的一般方法。经过北宋贾宪、刘益等人的工作,求高次方程正根的问题解决了。
随着数学问题的日益复杂,迫切需要一种普遍的建立方程的方法,天元术便在北宋应运而生了、洞渊、石信道等都是天元术的先驱。但直到李冶之前,天元术还是比较幼稚的,记号混乱、复杂,演算烦琐。
李冶则在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。
特别值得一提的是,他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。
为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
百度百科-天元术
百度百科-李治
对我国古代数学成就天元术的发展作出重要贡献的是什么?
对我国古代数学成就天元术的发展作出重要贡献的是李冶。李冶在前人的基础上,将天元术改进成一种更简便而实用的方法。当时,北方出了不少算书,除《铃经》外,还有《照胆》、《如积释锁》、《复轨》等,这无疑为李冶的数学研究提供了条件。
他在桐川得到了洞渊的一部算书,内有九客之说,专讲勾股容圆问题。此书对他启发甚大。为了能全面、深入地研究天元术,李冶把勾股容圆(即切圆)问题作为一个系统来研究。他讨论了在各种条件下用天元术求圆径的问题,写成《测圆海镜》十二卷,这是他一生中的最大成就。
扩展资料
李冶由于摆脱了几何思维束缚,在方程理论上取得了四项进展:
第一,他改变了传统的把常数项看作正数的观念,常数项可正可负,而不再拘泥于它的几何意义。
第二,李冶已能利用天元术熟练地列出高次方程。在这里,未知数已具有纯代数意义,二次方并非代表面积,三次方程也并非代表体积。
第三,李冶完整解决了分式方程问题,他已懂得用方程两边同乘一个整式的方法化分式方程为整式方程。
第四,李冶已懂得用纯代数方法降低方程次数。当方程各项含有公因子xn(n为正整数)时,李冶便令次数最低的项为实,其他各项均降低这一次数。
此外,李冶还发明了负号,他的负号不同,是数字上画一条斜线。而在国外,德国人是在15世纪才引入负号的。李冶还发明了一套相当简明的小数记法,在李冶之前,小数记法离不开数名,如7.59875尺记作七尺五寸九分八厘七毫五丝。
天元术的主要贡献者
天元术的主要贡献者是李冶和朱世杰,两位数学家分别在1248年和元代系统地介绍了用天元术建立二次方程。李冶在《测圆海镜》、《益古演段》中,朱世杰在《算学启蒙下卷》《四元玉鉴》中。
天元术是利用未知数列方程的一般方法,与现代代数学中列方程的方法基本一致。在古代数学中,列方程和解方程是相互联系的两个重要问题。
在宋代以前,数学家要列出一个方程,如唐代王孝通运用几何方法列三次方程,往往需要高超的数学技巧、复杂的推导和大量的文字说明,这是一件相当困难的工作。随着宋代创立的增乘开方法的发展,解方程有了完善的方法,这就直接促进了对于列方程方法的研究,于是,又出现了中国数学的又一项杰出创造天元术。
好了,今天我们就此结束对“天元术的主要贡献者”的讲解。希望您已经对这个主题有了更深入的认识和理解。如果您有任何问题或需要进一步的信息,请随时告诉我,我将竭诚为您服务。
本页面文章天元术的主要贡献者内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。