光合作用的三个阶段 光合作用分几个过程

光合作用的三个阶段 光合作用分几个过程

大家好,很高兴能够为大家解答这个光合作用的过程问题集合。我将根据我的知识和经验,为每个问题提供清晰和详细的回答,并分享一些相关的案例和研究成果,以促进大家的学习和思考。

光合作用的三个阶段

第一阶段:在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP。

第二阶段:在叶绿体基质中,C?结合CO?生成两分子C?。

第三阶段:在叶绿体基质中,ATP水解为ADP与Pi释放能量,C?吸收能量并结合第一阶段中水生成的还原氢,生成糖类和C?。

光反应阶段的特征是在光驱动下水分子氧化释放的电子通过类似于线粒体呼吸电子传递链那样的电子传递系统传递给NADP+,使它还原为NADPH。电子传递的另一结果是基质中质子被泵送到类囊体腔中,形成的跨膜质子梯度驱动ADP磷酸化生成ATP。

暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和NADPH的提供。

扩展资料:

光合作用第二个阶段中的化学反应,没有光能也可以进行,这个阶段叫做暗反应阶段。暗反应阶段中的化学反应是在叶绿体内的基质中进行的。光反应阶段和暗反应阶段是一个整体,在光合作用的过程中,二者是紧密联系、缺一不可的。

光合作用为包括人类在内的几乎所有生物的生存提供了物质来源和能量来源。因此,光合作用对于人类和整个生物界都具有非常重要的意义。

当特殊叶绿素a对(P)被光激发后成为激发态P*,放出电子给原初电子受体(A)。叶绿素a被氧化成带正电荷(P+)的氧化态,而受体被还原成带负电荷的还原态(A-)。氧化态的叶绿素(P+)在失去电子后又可从次级电子供体(D)得到电子而恢复电子的还原态。

这样不断地氧化还原,原初电子受体将高能电子释放进入电子传递链,直至最终电子受体NADP+。同样,氧化态的电子供体(D+)也要想前面的供体夺取电子,一次直到最终的电子供体水。

百度百科——光合作用

光合作用的过程是什么?

光合作用(Photosynthesis),即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,经过光反应和暗反应,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。

一、光反应

1、场所:叶绿体的类囊体上。

2、条件:光照、色素、酶等。

3、物质变化:叶绿体利用吸收的光能,将水分解成[H]和O2,同时促成ADP和Pi发生化学反应,形成ATP。

4、能量变化:光能转变为ATP中的活跃的化学能。

二、暗反应

1、场所:叶绿体内的基质中。

2、条件:多种酶参加催化。

3、物质变化:利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖。由于这阶段基本上不直接依赖于光,而只是依赖于NADPH和ATP的提供,故称为暗反应阶段。

光合作用的意义:

1、将太阳能变为化学能

植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为,约为人能所需能量的10倍。

有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一个巨型的能量转换站。

2、把无机物变成有机物

植物通过光合作用制造有机物的规模是非常巨大的。据估计,植物每年可吸收CO2约合成约的有机物。地球上的自养植物同化的碳素,40%是由浮游植物同化的,余下60%是由陆生植物同的。

人类所需的粮食、油料、纤维、木材、糖、水果等,无不来自光合作用,没有光合作用,人类就没有食物和各种生活用品。换句话说,没有光合作用就没有人类的生存和发展。

3、维持大气的碳,氧平衡

大气之所以能经常保持21%的氧含量,主要依赖于光合作用(光合作用过程中放氧量约)。光合作用一方面为有氧呼吸提供了条件,另一方面,的积累,逐渐形成了大气表层的臭氧(O3)层。

臭氧层能吸收太阳光中对生物体有害的强烈的紫外辐射。植物的光合作用虽然能清除大气中大量的CO2,但大气中CO2的浓度仍然在增加,这主要是由于城市化及工业化所致。

光合作用分几个过程

2个,光反应和暗反应

条件:光照、光合色素、光反应酶.

场所:叶绿体的类囊体薄膜.

①水的光2H2O→4[H]+O2↑(在光和叶绿体中的色素的催化下).②ATP的合成:ADP+Pi→ATP(在光、酶和叶绿体中的色素的催化下).

影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度等.

意义:①光解水,产生氧气.②将光能转变成化学能,产生ATP,为暗反应提供能量.③利用水光解的产物氢离子,合成NADPH,为暗反应提供还原剂NADPH.

光合作用反应式怎么写

光合作用的简单反应式:水+二氧化碳→有机物+氧,即CO2+H2O→(CH2O)+O2。

概念及其反应式

光合作用是指绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存着能量的有机物,并且释放出氧的过程。

总反应式:CO2+H2O→(CH2O)+O2

反应式的书写应注意以下几点:(1)光合作用有水分解,尽管反应式中生成物一方没有写出水,但实际有水生成;(2)“─→”不能写成“=”。

对光合作用的概念与反应式应该从光合作用的场所——叶绿体、条件——光能、原料——二氧化碳和水、产物——糖类等有机物和氧气来掌握。

光合作用的过程

①光反应阶段:a、水的光解:2H2O→4[H]+O2(为暗反应提供氢);b、ATP的形成:ADP+Pi+光能─→ATP(为暗反应提供能量)

②暗反应阶段:a、CO2的固定:CO2+C5→2C3;;b、C3化合物的还原:2 C3+[H]+ATP→(CH2O)+C5

光合作用的意义

1.光合作用通常也会制造淀粉等有机物,不仅是植物自身的生长发育还是需要的营养物质,同时也是人和动物的食物来源。

2.光合作用通常也会转化成光能然后储存在有机物中,这些能量通常也是植物、动物和人体生命活动的而一些重要的能量来源。

3.同时光合作用还可以稳定大气中氧气和二氧化碳的含量相对稳定。

然而总之光合作用通常可以是食物来源、能量的来源、同时还可以保持碳氧的平衡。

可见光的照射下,将二氧化碳和水转化为有机物(主要是淀粉),并释放出氧气的生化过程。对于生物界的几乎所有生物来说,这个过程是他们赖以生存的关键,而地球上的碳氧循环,光合作用是必不可少的。

主要还是指把二氧化碳转化成有机物释放出氧气的过程,而对于生物界所有植物来说,,这个过程同样也是生存的挂件,因此也是地球上碳氧的一种循环,而光合作用的意义非常重大。

光合作用几个阶段

光合作用可分为光反应和碳反应(旧称暗反应)两个阶段。

光反应

条件:光照、光合色素、光反应酶。

场所:叶绿体的类囊体薄膜。(蓝细菌等微生物的反应场所在细胞质)(色素所在地)

光合作用的反应:

(原料)光

(产物)水→氧气(光和叶绿体是条件)+能量(储存在ATP中)+还原氢(NADPH)

叶绿体

过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。

②ATP的合成:ADP+Pi+能量→ATP(在酶的催化下)。

影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。

意义:①光解水,产生氧气。

②将光能转变成活跃的化学能,储存在ATP中,为碳反应提供能量。

③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ)。

碳反应

条件:多种酶。

场所:叶绿体基质。

过程:①碳的固定:C5+CO2→2C3(在酶的催化下)

②2C3+[H]→(CH2O)+C5(在ATP供能和酶的催化下)

影响因素:温度、CO2浓度

光合作用分为几个阶段

光合作用只有两个阶段

光合作用可分为光反应和碳反应(旧称暗反应)两个阶段

光反应

条件:光照、光合色素、光反应酶。 场所:叶绿体的类囊体薄膜。(色素) 光合作用的反应: (原料) 光 (产物) 水+二氧化碳-----------→有机物(主要是淀粉) + 氧气( 光和叶绿体是条件) 叶绿体 过程:①水的光解:2H2O→4[H]+O2(在光和叶绿体中的色素的催化下)。 ②ATP的合成:ADP+Pi+能量→ATP(在光、酶和叶绿体中的色素的催化下)。 影响因素:光照强度、CO2浓度、水分供给、温度、酸碱度、矿质元素等。 意义:①光解水,产生氧气。 ②将光能转变成化学能,产生ATP,为碳反应提供能量。 ③利用水光解的产物氢离子,合成NADPH(还原型辅酶Ⅱ),为碳反应提供还原剂NADPH(还原型辅酶Ⅱ),NADPH(还原型辅酶Ⅱ可以为碳反应提供原料。

碳反应

碳反应的实质是一系列的酶促反应。原称暗反应,后随着研究的深入,科学家发现这一概念并不准确。因为所谓的暗反应在暗中只能进行极短的时间,而在有光的条件下能连续不断进行,并受到光的调节。所以在20世纪90年代的一次光合作用会议上,从事植物生理学研究的科学家一致同意,将暗反应改称为碳反应。 条件:碳反应酶。 场所:叶绿体基质。 影响因素:温度、CO2浓度、酸碱度等。 光照下的绿色植物

过程:不同的植物,碳反应的过程不一样,而且叶片的解剖结构也不相同。这是植物对环境的适应的结果。碳反应可分为C3、C4和CAM三种类型。三种类型是因二氧化碳的固定这一过程的不同而划分的。对于最常见的C3的反应类型,植物通过气孔将CO2由外界吸入细胞内,通过自由扩散进入叶绿体。叶绿体中含有C5。起到将CO2固定成为C3的作用。C3再与NADPH在ATP供能的条件下反应,生成糖类(CH2O)并还原出C5。被还原出的C5继续参与碳反应。 光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。 CO2+H2O( 光照、酶、 叶绿体)==(CH2O)+O2 (CH2O)表示糖类(叶绿体相当于催化剂[1])

如有疑问请追问 如满意请及时采纳 谢谢

光合作用反应过程

光合作用的反应和过程是绿色植物吸收光能后,可以将二氧化碳(CO2)和水(H2O)合成有机物,同时释放氧气。另外光合作用的反应过程有光反应阶段-暗反应阶段,两者缺一不可。

光合作用图解

扩展资料

光合作用,通常是指绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程。其主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。

植物在同化无机碳化物的同时,把太阳能转变为化学能,储存在所形成的有机化合物中。每年光合作用所同化的太阳能约为人类所需能量的10倍。有机物中所存储的化学能,除了供植物本身和全部异养生物之用外,更重要的是可供人类营养和活动的能量来源。因此可以说,光合作用提供今天的主要能源。绿色植物是一个巨型的能量转换站。

正在光合作用的植物

非常高兴能与大家分享这些有关“光合作用的过程”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。

【版权声明】

本页面文章光合作用的过程内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。