分式的运算法则(分式的乘除和分数乘除的区别 今晚就要)

分数的运算法则:1.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。2.分数乘整数法则:用分数的分子和整数...接下来由新高三网小编为你整理了分式的乘除相关详细内容,我们一起来分享吧。
分式的运算法则(分式的乘除和分数乘除的区别 今晚就要)

现在我来为大家分享一下关于分式的乘除的问题,希望我的解答能够帮助到大家。有关于分式的乘除的问题,我们开始谈谈吧。

分式的运算法则

分数的运算法则:

1.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。

2.分数乘整数法则:用分数的分子和整数相乘的积作分子,分母不变。

3.分数乘分数法则:用分子相乘的积作分子,分母相乘的积作为分母。

4.分数除以整数(0除外),等于分数乘以这个整数的倒数。

5.一个数除以分数,等于这个数乘以分数的倒数。

6.分数计算到最后,得数必须化成最简分数。

7.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。

定义

形如(A、B是整式,B中含有字母)的式子叫做分式。其中A叫做分式的分子,B叫做分式的分母。当分式的分子的次数低于分母的次数时,我们把这个分式叫做真分式;当分式的分子的次数高于分母的次数时,我们把这个分式叫做假分式。

注意:判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式。无需考虑该分式是否有意义,即分母是否为零。由于字母可以表示不同的数,所以分式比分数更具有一般性。

方法:数看结果,式看形。?

分式条件

分式有意义条件:分母不为0。

2.分式值为0条件:分子为0且分母不为0。

3.分式值为正(负)数条件:分子分母同号得正,异号得负。

4.分式值为1的条件:分子=分母≠0。

5.分式值为-1的条件:分子分母互为相反数,且都不为0。

代数式分类

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无理式和有理式统称代数式。

分式的混合运算

分式的混合运算

分式的乘除法法则:

两个分式相乘,把分子相乘的 积作为积的分子,把分母相乘的积作为积的分母;

两个分式 相除,把除式的分子和分母颠倒位置后再与被除式相乘。?

分式的混合运算顺序,先算乘方,再算乘除,最后 算加减,有括号先算括号里面的。

一般地,如果A、B表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。

分式是不同于整式的一类代数式,分式的值随分式中字母取值的变化而变化。分式有意义条件是分母不为0。

分式条件

1.分式有意义条件:分母不为0。

2.分式值为0条件:分子为0且分母不为0。

3.分式值为正(负)数条件:分子分母同号得正,异号得负。

4.分式值为1的条件:分子=分母≠0。

5.分式值为-1的条件:分子分母互为相反数,且都不为0。

代数式分类

整式和分式统称为有理式。

带有根号且根号下含有字母的式子叫做无理式。

无理式和有理式统称代数式。

约分

根据分式基本性质,可以把一个分式的分子和分母的公因式约去,这种变形称为分式的约分。约分的关键是确定分式中分子与分母的公因式。

步骤:

1.如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去。

2.分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

公因式的提取方法

系数取分子和分母系数的最大公约数,字母取分子和分母共有的字母,指数取公共字母的最小指数,即为它们的公因式。

分式的乘除和分数乘除的区别 今晚就要

分式的乘法法则:

两个分式相乘,用分子的积作为积的分子,分母的积作为积的分母.

两个分式相除,把除式的分子和分母颠倒位置(除数的倒数)后再与被除式相乘.

分数乘除法

1、分数乘整数,分母不变,分子乘整数,最后要约分.

2.分数乘分数,用分子乘分子,用分母乘分母,最后要约分.

3.分数除以整数,分母不变,如果分子是整数的倍数,则用分子除以整数,最后要约分.

4.分数除以整数,分母不变,如果分子不是整数的倍数,则用这个分数乘这个整数的倒数,最后要约分.

5.分数除以分数,等于被除数乘除数的倒数,最后不是最简分数要约分.

非常高兴能与大家分享这些有关“分式的乘除”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。

【版权声明】

本页面文章分式的乘除内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。