常用求导公式(基本求导公式18个)

常用求导公式有:1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有...接下来由新高三网小编为你整理了16个基本导数公式相关详细内容,我们一起来分享吧。
常用求导公式(基本求导公式18个)

16个基本导数公式的今日更新是一个不断变化的过程,它涉及到许多方面。今天,我将与大家分享关于16个基本导数公式的最新动态,希望我的介绍能为有需要的朋友提供一些帮助。

常用求导公式

常用求导公式有:

1、f'(x)=lim(h->0)[(f(x+h)-f(x))/h]. 即函数差与自变量差的商在自变量差趋于0时的极限,就是导数的定义。其它所有基本求导公式都是由这个公式引出来的。包括幂函数、指数函数、对数函数、三角函数和反三角函数,一共有如下求导公式:

2、f(x)=a的导数, f'(x)=0, a为常数. 即常数的导数等于0;这个导数其实是一个特殊的幂函数的导数。就是当幂函数的指数等于1的时候的导数。可以根据幂函数的求导公式求得。

3、f(x)=x^n的导数, f'(x)=nx^(n-1), n为正整数. 即系数为1的单项式的导数,以指数为系数, 指数减1为指数. 这是幂函数的指数为正整数的求导公式。

4、f(x)=x^a的导数, f'(x)=ax^(a-1), a为实数. 即幂函数的导数,以指数为系数,指数减1为指数.

5、f(x)=a^x的导数, f'(x)=a^xlna, a>0且a不等于1. 即指数函数的导数等于原函数与底数的自然对数的积.

6、f(x)=e^x的导数, f'(x)=e^x. 即以e为底数的指数函数的导数等于原函数.

7、f(x)=log_a x的导数, f'(x)=1/(xlna), a>0且a不等于1. 即对数函数的导数等于1/x与底数的自然对数的倒数的积.

8、f(x)=lnx的导数, f'(x)=1/x. 即自然对数函数的导数等于1/x.

9、(sinx)'=cosx. 即正弦的导数是余弦.

10、(cosx)'=-sinx. 即余弦的导数是正弦的相反数.

11、(tanx)'=(secx)^2. 即正切的导数是正割的平方.

12、(cotx)'=-(cscx)^2. 即余切的导数是余割平方的相反数.

13、(secx)'=secxtanx. 即正割的导数是正割和正切的积.

14、(cscx)'=-cscxcotx. 即余割的导数是余割和余切的积的相反数.

15、(arcsinx)'=1/根号(1-x^2).

16、(arccosx)'=-1/根号(1-x^2).

17、(arctanx)'=1/(1+x^2).

18、(arccotx)'=-1/(1+x^2).

基本求导公式表

求导公式表如下:

1、(sinx)'=cosx,即正弦的导数是余弦。

2、(cosx)'=-sinx,即余弦的导数是正弦的相反数。

3、(tanx)'=(secx)^2,即正切的导数是正割的平方。

4、(cotx)'=-(cscx)^2,即余切的导数是余割平方的相反数。

5、(secx)'=secxtanx,即正割的导数是正割和正切的积。

6、(cscx)'=-cscxcotx,即余割的导数是余割和余切的积的相反数。

7、(arctanx)'=1/(1+x^2)。

8、(arccotx)'=-1/(1+x^2)。

9、(fg)'=f'g+fg',即积的导数等于各因式的导数与其它函数的积,再求和。

10、(f/g)'=(f'g-fg')/g^2,即商的导数,取除函数的平方为除式。被除函数的导数与除函数的积减去被除函数与除函数的导数的积的差为被除式。

11、(f^(-1)(x))'=1/f'(y),即反函数的导数是原函数导数的倒数,注意变量的转换。

求导注意事项

对于函数求导一般要遵循先化简,再求导的原则,求导时不但要重视求导法则的运用,还要特别注意求导法则对求导的制约作用,在化简时,首先注意变换的等价性,避免不必要的运算错误。

需要记住几个常见的高阶导数公式,将其他函数都转化成我们这几种常见的函数,代入公式就可以了,也有通过求一阶导数,二阶,三阶的方法来找出他们之间关系的。

基本求导公式18个

以下是18个基本导数公式(y:原函数;y':导函数):

1、y=c,y=0(c为常数)

2、y=xxμ,y'=μxμ负1(μ为常数且μ不等于0)。

3。y=aAx,y'=aAxIna。y=eAx,y'=eAx。

4、y=logax,y'=1/(xina)(a>0且a=1);y=Inx,y'=1/x。

5、y=sinx,y'=cosx。

6、y=cosx,y'=负sinx。

7、y=tanx,y'=(secx)2=1/(cosx)2。

8、y=cotx,y'=负(cscx)2=负1/(sinx)2。

9、y=arcsinx,y'=1/√(1负x2)。

10、y=arccosx,y'=负1/√(1负x2)。

11、y=arctanx,y'=1/(1+x2)。

12、y=arccotx,y'=负1/(1+2)。

13、y=shx,y'=chx。

14、y=chx,y'=shx。

15、y=thx,y'=1/(chx)2。

16、y=arshx,y'=1/V(1+x12)。

17、y=c(c为常数)y'=0

18、y=xny'=nxx(n负1)。

24个基本求导公式

24个基本求导公式如下:

1、C'=0(C为常数)。

2、(xAn)'=nxA(n——1)。

3、(sinx)'=cosx。

4、(cosx)'=——sinx。

5、(Inx)'=1/x。

6、(enx)'=enx。

7、 (logaX)'=1/(xlna)。

8、 (anx)'=(anx)*ina。

9、(u±V)'=u'±V'。

10、 (uv)'=u'v+uv'。

11、 (u/v)'=(u'v——uv')/v。

12、 f(g(x))'=(f(u))'(g(x))'u=g(x)。

导函数:

如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,记为f'(x)。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间a,b上可导,f'(x)为区间a,b上的导函数,简称导数。

条件:如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是在定义域上处处可导是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。

常用求导公式24个

24个基本求导公式

1、C′=0 (C为常数)

2、(x∧n)′=nx∧(n-1)

3、(sinx)′=cosx

4、(cosx)′=-sinx

5、(lnx)′=1/x

6、(e∧x)′=e∧x

7、(logaX)'=1/(xlna)

8、(a∧x)'=(a∧x)*lna

9、(u±v)′=u′±v′

10、(uv)′=u′v+uv′

11、(u/v)′=(u′v-uv′)/v

12、(f(g(x))′=(f(u))′(g(x))′. u=g(x)

13、y=c(c为常数) y'=0

14、y=x^n y'=nx^(n-1)

15、y=a^x y'=a^xlna

y=e^x y'=e^x

16、y=logax y'=logae/x

y=lnx y'=1/x

17、y=sinx y'=cosx

18、y=cosx y'=-sinx

19、y=tanx y'=1/cos^2x

20、y=cotx y'=-1/sin^2x

21、y=arcsinx y'=1/√1-x^2

22、y=arccosx y'=-1/√1-x^2

23、y=arctanx y'=1/1+x^2

24、y=arccotx y'=-1/1+x^2

基本导数公式有:(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx

求导是数学计算中的一个计算方法,它的定义就是,当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。

导数公式是什么

这里将列举几个基本的函数的导数以及它们的推导过程:

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

9.y=arcsinx y'=1/√1-x^2

10.y=arccosx y'=-1/√1-x^2

11.y=arctanx y'=1/1+x^2

12.y=arccotx y'=-1/1+x^2

在推导的过程中有这几个常见的公式需要用到:

1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』

2.y=u/v,y'=u'v-uv'/v^2

3.y=f(x)的反函数是x=g(y),则有y'=1/x'

证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。

2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。

3.y=a^x,

⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)

⊿y/⊿x=a^x(a^⊿x-1)/⊿x

如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。

所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β

显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。

把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。

可以知道,当a=e时有y=e^x y'=e^x。

4.y=logax

⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x

⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x

因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有

lim⊿x→0⊿y/⊿x=logae/x。

可以知道,当a=e时有y=lnx y'=1/x。

这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,

所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1)。

5.y=sinx

⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)

⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)

所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx

6.类似地,可以导出y=cosx y'=-sinx。

7.y=tanx=sinx/cosx

y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x

8.y=cotx=cosx/sinx

y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x

9.y=arcsinx

x=siny

x'=cosy

y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2

10.y=arccosx

x=cosy

x'=-siny

y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2

11.y=arctanx

x=tany

x'=1/cos^2y

y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2

12.y=arccotx

x=coty

x'=-1/sin^2y

y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2

另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与

4.y=u土v,y'=u'土v'

5.y=uv,y=u'v+uv'

均能较快捷地求得结果。

导数基本公式是什么?

导数公式

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna

y=e^x y'=e^x

4.y=logax y'=logae/x

y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

运算法则

减法法则:(f(x)-g(x))'=f'(x)-g'(x)

加法法则:(f(x)+g(x))'=f'(x)+g'(x)

乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

今天关于“16个基本导数公式”的讨论就到这里了。希望通过今天的讲解,您能对这个主题有更深入的理解。如果您有任何问题或需要进一步的信息,请随时告诉我。我将竭诚为您服务。

【版权声明】

本页面文章16个基本导数公式内容由互联网用户自发贡献,该文观点仅代表用户本人,并不代表新高三网立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容(包括不限于图片和视频等),请邮件至379184938@qq.com 举报,一经查实,本站将立刻删除。